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Citrus is one of the world’s most important fruit crops, contributing essential nutrients, 
such as vitamin C and minerals, to the human diet. It is characterized by two important 
traits: first, its major edible part is composed of juice sacs, a unique structure among 
fruit, and second, relatively high levels of citric acid are accumulated in the vacuole of the 
juice sac cell. Although the major routes of primary metabolism are generally the same 
in citrus fruit and other plant systems, the fruit’s unique structural features challenge our 
understanding of carbon flow into the fruit and its movement through all of its parts. In 
fact, acid metabolism and accumulation have only been summarized in a few reviews. 
Here we present a comprehensive view of sugar, acid and amino acid metabolism and 
their connections within the fruit, all in relation to the fruit’s unique structure.
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CITRUS FRUIT MORPHOLOGY — A UNIQUE STRUCTURE THAT 
DETERMINES CRITICAL ASPECTS OF PRIMARY METABOLISM

The citrus fruit, termed hesperidium, is a fleshy fruit which, like all berry-type fruit, is characterized 
by a thick and fleshy pericarp (Esau, 1966; Fahn, 1990). The pericarp is usually divided into three 
tissues: the exocarp, which is the outer skin, the mesocarp, which usually refers to the major fleshy, 
edible interior, and the endocarp, an internal tissue composed of one (as in tomato) or several cell 
layers. In true fruit, which develop from the ovary, these three tissues are part of the ovary wall.

The exocarp of citrus fruit is the outer colored peel, often referred to as the flavedo (Schneider, 
1968) (Figure 1A). Proceeding inward is the albedo, the spongy white part of the peel. Most cell 
layers of the albedo are considered to be mesocarpal tissue, and the two or three innermost cell 
layers are referred to as endocarp (Figure 1). In mandarins, the albedo disintegrates during fruit 
maturation, leaving only the vascular system (reticula), which gives this group its name, Citrus 
reticulata. The pulp, the edible part of the fruit, is composed of juice sacs/vesicles that develop from 
the endocarp at an early stage of fruit development (Figure 1). Some authors refer to the juice sacs 
as endocarp, while others consider them to be a separate tissue. The juice sacs develop into the 
ovary locule, defined as the section in which the ovary wall that develops into fruit. The carpel and 
the juice sacs are covered by the same epidermal layer of segment epidermis (Figure 1B). The juice 
sac is connected to the wall by a stalk, which joins the segment epidermis, so the latter provides 
one continuous layer covering both the segment and the juice sac. Three major vascular bundles, 
a dorsal and two side (septal) bundles, are found in each section. Most juice sacs initiate from the 
dorsal wall, but some develop from the side wall, adjacent to the side vascular bundle (Koch and 
Avigne, 1990). When present, seeds develop in the inner side of the fruit, where the carpels merge 
or along the ovary wall. Nutrition is supplied by a specific bundle, termed seed (or central) bundle, 
reaching from the fruit pedicle to the center of the fruit.
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The juice sac is a unique structure, found only in fruit of the 
genus Citrus and its close relatives. It is often referred to as a 
“sac of juice,” but this is misleading; the juice sac is composed 
of various layers of cells, each with distinct morphology 
(Shomer, 1975; Burns et al., 1992; Burns et al., 1994). The 
vesicle primordia emerge from the endocarp soon after 
fertilization and fruit set. In a few cases, juice sac primordia 
are visible even before fertilization and fruit set, mainly when 
fertilization does not occur and parthenocarpic fruit develop 
(this is the case in many commercial citrus cultivars) (Burns 
et al., 1992). During fruit development, the vacuole of the 
juice sac cell becomes greatly enlarged, occupying over 90% 
of the total cell volume, and releases its content as juice. At 
fruit maturity, the vacuole contains about 100, 75, and 90% 
of the total cellular sucrose, hexose and citrate, respectively 
(Echeverria and Valich, 1988).

The juice sac is considered the major fruit sink; however, it 
is disconnected from the vascular system, which ends in the 
albedo (Figure 1B). This unique characteristic determines 
photoassimilate translocation rate into the sink cells and 
therefore, rate of fruit development, and the time required to 
reach maturity.

CITRUS FRUIT DEVELOPMENT IN 
RELATION TO CHANGES IN SUGAR 
AND ACID CONTENTS AND CLIMATIC 
EFFECTS

In many citrus cultivars, the major external change that marks 
the conversion of the citrus ovary into a fruitlet is usually petal 
fall (Spiegel-Roy and Goldschmidt, 1996). Fruit development 
is divided into three overlapping stages: cell division (stage I), 
cell expansion (stage II), and fruit maturation (stage III) (Bain, 
1958). During stage I, fruit growth is relatively moderate, and 
the peel, especially the albedo, thickens by cell division. During 

this stage, juice sacs grow out via cell division into the locule. 
Stage II is characterized by rapid fruit growth, mostly due to 
juice cell expansion. During stage III, the rate of fruit volume 
increase is greatly reduced. Externally, the major change is color 
break, and internally, sugar and acid levels reach the desired 
levels for harvesting and consumption, as discussed further by 
Spiegel-Roy and Goldschmidt (1996). Changes in secondary 
metabolites give the fruit its unique aroma and flavor (Tadeo 
et al., 2008). As there is no respiration burst or autocatalytic 
ethylene production, the citrus fruit does not undergo the 
classical ripening process, typical of climacteric fruits. For a 
given citrus cultivar, the final flavor quality of the fruit has to 
be determined empirically and depends, largely, on consumer 
preference (Goldenberg et al., 2018). The completion of fruit 
development is cultivar-dependent, with some cultivars, such 
as Satsuma mandarin (Citrus unshiu), being ready for harvest 
5–6 months after flowering, whereas others, such as Valencia 
orange (Citrus sinensis), are harvested 12–14 months after 
flowering (Ladaniya, 2008). In hot climates, fruit development 
is accelerated, potentially reducing the time needed for fruit 
maturation by ca. 50% (Reuther, 1973). Sugar and acid level 
in the pulp are the two major fruit quality determinants. 
The major organic acid associated with pulp total acidity is 
citrate, which begins to accumulate during stage II of fruit 
development, when the fruit and its juice vesicle cells enlarge 
rapidly (Hussain et al., 2017). The accumulation continues for 
a few weeks, reaching a peak when the fruit volume is about 
50% of its final value, then the acid declines gradually as the 
fruit matures. In most varieties, there is a slight increase in 
sugar content early in fruit development, but the major 
increase occurs during stage III, when the acid content 
declines (Sinclair, 1984). In citrus, the major translocated 
sugar is sucrose and in many varieties, it accumulates to double 
the level of glucose or fructose (Goldschmidt and Koch, 1996). 
Maturation index, which determines the fruit’s internal quality, 
is the ratio between total soluble solids (TSS, BRIX) and total 

FIGURE 1 | Citrus fruit morphology. Cross section of the fruit (A), and schematic representation of a segment, including the peel tissues (B). The segment epidermis 
also covers the juice sacs, and the three segment vascular bundles — dorsal and two septal — do not reach the pulp tissues.
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acidity. As the acid content declines toward harvest, sugars 
account for most of the TSS.

As already noted, climate plays a major role in fruit development 
and maturation. Most of the commercial citrus cultivars were 
selected or bred in the subtropical regions of the world, and they are 
therefore adapted to regions where maturation occurs during the 
cool season (Wu et al., 2018). In hot climates, such as in the tropics, 
fruit maturation is accelerated and the major factor affected by 
temperature is the fruit acid level, with a linear relationship between 
the accumulation of heat hours and acid decline (Reuther, 1973). 
Therefore, in hot climates, the fruit reaches its maturation index 
faster than in colder climates, and tends to be too sweet. However, 
this is only part of the problem. Citrate catabolism is associated 
with an increase in alcohols, aldehydes and other secondary 
metabolites associated with reduced flavor and fruit decay (Porat 
et al., 2002). Therefore, in hot climates, the time during which the 
fruit is harvestable and marketable is considerably shortened, and 
fruit decay occurs faster than in the colder regions (Reuther, 1973). 
Hot climate has the opposite effect on color break, which requires 
the correct number of cold night-time to develop (Goldschmidt, 
1988; Iglesias et al., 2007; Tadeo et  al., 2008). Therefore, not only 
the fruit decay faster in hot climates, but their color does not 
fully develop, and in extreme cases may even remain green. One 
of the expected outcomes of climate change is warmer winter 
temperatures with shorter cold-night times (Cleland et al., 2007). 
As most citrus cultivars are harvested during this season, the effect 
of global warming is expected to be negative on both internal and 
external citrus fruit quality.

PHOTOASSIMILATE TRANSLOCATION 
INTO FRUIT AND SUGAR METABOLISM

Sink Strength and Its Control by Sucrose 
Hydrolysis in the Sink
Sink strength is determined by the sink’s size and activity 
(reviewed in Sonnewald et al., 1994; Chang and Zhu, 2017; 
Smith et al., 2018). In crop plants, it is defined in practice by 
yield parameters (fruit quantity, fruit size, etc.), and quality 
parameters, such as carbohydrate (BRIX) and protein levels. Fruit 
size is genetically controlled, but physiological parameters, such 
as sink position in relation to other sinks and source tissues, and 
the time it takes to develop, also affect sink size and therefore, its 
strength (Bangerth and Ho, 1984; Ross-Ibarra, 2005). In tomato, 
there are over 30 loci that define fruit size, with many genes acting 
to control cell division at various developmental stages (Barrero 
et al., 2006). Practically, sink activity is defined as the rate of 
photoassimilate translocation and their contribution to growth 
and developmental processes relative to their accumulation. To 
simplify the discussion, we will refer here only to sugars, as the 
major photoassimilates in fruit in general, and in citrus fruit in 
particular. As with many other plant species, in citrus, sucrose 
is the major sugar translocated from the leaves to the fruit 
(Goldschmidt and Koch, 1996). During fruit maturation, it is the 
major accumulated sugar, with a sucrose:glucose:fructose ratio 
of 2:1:1 in many cultivars (Komatsu et al., 2002) and references 
therein). In many cases, sucrose accumulation is detected early 

in fruit development, indicating a higher translocation than 
utilization rate (Hiratsuka et al., 2017). As discussed further on, 
sucrose catabolism into hexoses within the fruit provides the 
central mechanism controlling sink activity, and therefore sink 
strength. Sucrose is hydrolyzed either to fructose and UDP-
glucose by sucrose synthase (SuSy), a bidirectional enzyme, or 
to glucose and fructose by invertase, a unidirectional enzyme 
(Figure 2) (Roitsch and Gonzalez, 2004). Following hydrolysis, 
glucose and fructose are phosphorylated to glucose-6-phosphate 
and fructose-6-phosphate by hexose kinase and fructokinase, 
respectively, while UDP-glucose is phosphorylated to glucose-
1-phosphate by UDP-glucose phosphorylase. While SuSy is 
cytosolic, sucrose hydrolysis by invertase is performed in the 
apoplasm by cell-wall invertases, in the cytosol by neutral/
alkaline invertases, and in the vacuole by acidic invertases. The 
enzyme is modulated post-translationally by invertase inhibitor, 
which might act in vivo, but not necessarily in vitro (Roitsch and 
Gonzalez, 2004; Katz et al., 2007; Palmer et al., 2015). In a few 
plant systems, it has been shown that alteration of the activities 
of SuSy and various forms of invertase results in altered yield 
and/or carbohydrate levels, and thus altered sink strength. 
For example, one amino acid change in the tomato cell-wall 
invertase LIN5 enhanced specific activity of the enzyme, the 
rate of sucrose uptake and, overall, BRIX (Fridman et al., 2004; 
Baxter et al., 2005). Apoplasmic expression of a yeast invertase 
gene in potato enhanced tuber size (Sonnewald et al., 1997). 
Increased expression of cucumber SuSy induced sucrose and 
starch accumulation and increased fruit size (Fan et al., 2019). 
Transgenic downregulation of tomato SuSy resulted in reduced 
sucrose uptake early in fruit development, reduced fruit set, 
reduced fruit number and reduced fruit size (D’Aoust et al., 
1999). Similarly, reduced expression of acid invertase and SuSy 
in muskmelon and cucumber, respectively, reduced fruit size 
and sucrose level (Yu et al., 2008; Fan et al., 2019). Phenotypes 
associated with reduced sink strength were also demonstrated in 
carrot roots by downregulating vacuolar and cell-wall invertases 
as well as SuSy (Tang et al., 1999; Tang and Sturm, 1999). Taken 
together, these studies demonstrated the importance of invertases 
and SuSy for sink strength and supported the notion that sink 
strength is controlled, at least in part, within the sink cells and/or 
at translocation points, i.e., zones of phloem unloading.

Mechanisms of Phloem Unloading
Sugar transport from the leaf to the collecting phloem is defined 
as sugar or phloem loading, and its release from the transport 
system, the releasing phloem, into the sink cell is defined as sugar 
or phloem unloading (reviewed in Rennie and Turgeon, 2009; 
Turgeon and Wolf, 2009; Zhang and Turgeon, 2018). Movement 
of photoassimilates from the leaves to the sink through the stem 
via the transport phloem is a complex process. Although a major 
driving force is the concentration gradient between source and 
sink according to the pressure flow hypothesis (Münch, 1930), 
long-distance movement requires in and out movement of solutes 
from the transport system to the surrounding tissue, temporal 
accumulation, and energy investment (Thompson, 2006). The 
mechanism(s) of sugar unloading has been investigated in a 
number of fruit and other sink organs, such as tomato, grape 
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berry, cucumber, apple, walnut and potato tuber, by microscopy, 
fluorescent dyes, immunolocalization of sugar transporters, and 
use of transporter inhibitors (Ruan and Patrick, 1995; Wu et al., 
2004; Zhang et al., 2004; Zhang et al., 2006; Nie et al., 2010; Hu 
et al., 2011; Palmer et al., 2015; Chen et al., 2017). Unloading 
is operated by two major mechanisms, symplasmic, in which 
sugar transport occurs through the plasmodesmata connecting 
the transport cells and the sink cells, and apoplasmic, where 
sink cells are not connected symplasmically to the transport 
cells, and transport must therefore cross membranes through 
the apoplasm, usually using facilitated transport mechanisms 
(reviewed in Rennie and Turgeon, 2009; Turgeon and Wolf, 2009; 
Zhang and Turgeon, 2018). In some fruit, such as cucumber, 
apple, and kiwifruit, unloading is apoplasmic throughout fruit 
development (Zhang et al., 2004; Hu et al., 2011; Chen et al., 
2017). In other cases, such as tomato fruit and grape berry, there 
is a shift between symplasmic and apoplasmic unloading (Ruan 
and Patrick, 1995; Zhang et al., 2006), whereas in the potato tuber, 
the shift is from apoplasmic to symplasmic (Viola et al., 2001). In 
jujube, two shifts occur during fruit development; apoplasmic 
unloading early in fruit development shifts to symplasmic 
unloading, which then shifts back to apoplasmic unloading 
close to ripening (Nie et al., 2010). The two types of unloading 
occur simultaneously during walnut fruit and seed development, 
symplasmic in the seed and apoplasmic in the fruit (Wu et al., 
2004). Overall, symplasmic unloading is considered faster than 
apoplasmic unloading (Zhang and Turgeon, 2018). Therefore, 

the mechanism is dependent on the rates of sink development 
and photoassimilate utilization versus the rate and form of 
their accumulation, in order to avoid an increase in osmoactive 
molecules in the cytosol. For instance, in tomato fruit and grape 
berry, fruit development and sugar utilization are rapid during the 
first half of their development, requiring symplasmic unloading. 
Later, when the fruit shifts from a utilizing to accumulating 
sink, the unloading rate is reduced by shifting it to apoplasmic. 
During the first half of potato tuber development, it accumulates 
soluble, osmoactive sugars, and therefore apoplasmic unloading 
is required, but during later stages, starch (a non-osmoactive 
compound) is accumulated, allowing a faster unloading. Jujube 
fruit is characterized by rapid growth during the middle stages 
of its development, and therefore apoplasmic unloading is 
interrupted by symplasmic unloading during this stage.

Sugar Metabolism in Citrus Fruit and 
Possible Mechanisms of Its Unloading  
and Movement
As phloem unloading has never been investigated directly in 
citrus fruit, the mechanisms in the various fruit tissues are 
unclear (Goldschmidt and Koch, 1996). Nevertheless, potential 
mechanisms can be discussed based on the following: (i) 
the kinetics of sugar transport into the various fruit tissues, 
vascular bundles, segment epidermis, stalk of the juice sac, and 
juice sac, as determined using photoassimilate distribution by 
14CO2-feeding of leaves, through either continuous labeling or 

FIGURE 2 | Sugar metabolism and the interconversion of fructose-6-phosphate to fructose-1,6-bisphosphate (shaded). Compound inhibiting (red triangle) or 
inducing (green triangle) the activities of FBPase, PFP and PFK are shown. INV, invertase; SUSY, sucrose synthase; SPS, sucrose phosphate synthase; SPP, 
sucrose phosphate phosphatase; HK, hexose kinase; FK, fructokinase; UDPGluPho, UDP glucose phosphatase; PhoGluMu, phosphoglucose mutase; PhHexIso, 
phosphohexose isomerase; FBPase, fructose bisphosphate phosphatase; PFP, pyrophosphate-dependent fructose 6-phosphate kinase; PFK, ATP-dependent 
fructose 6-phosphate kinase; Fru-2,6-P2, fructose-2,6, bisphosphate; 2OG, 2-oxoglutarate.
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pulse-chase experiments (Koch, 1984; Koch and Avigne, 1984, 
Koch and Avigne, 1990; Hiratsuka et al., 2017), (ii) the steady-
state distribution of sucrose and hexoses, as well as the activities 
of sugar-metabolizing enzymes and their protein levels in the 
various fruit tissues, especially during intensive sugar uptake 
(Echeverria and Valich, 1988; Lowell et al., 1989; Tomlinson et 
al., 1991; Echeverria, 1992; Echeverria et al., 1992; Nolte and 
Koch, 1993a; Nolte and Koch, 1993b; Kubo et al., 2001; Hiratsuka 
et al., 2017). While the activities of sugar-metabolizing enzymes 
have been well-studied and characterized, understanding their 
physiological role during the various stages of fruit development 
is more challenging. In tomato, for instance, about 20 days post-
anthesis, SuSy activity decreased and the activity of an apoplasmic 
invertase, eventually identified as LIN5, was induced (Yelle et al., 
1991; Fridman et al., 2004). This shift was associated with the 
well-studied shift from symplasmic to apoplasmic unloading and 
with the conversion of the fruit from utilizing to accumulating 
sink (Ruan and Patrick, 1995). It might be concluded, therefore, 
that in tomato fruit, SuSy activity is required to maintain a high 
rate of sucrose utilization, whereas invertase activity is associated 
with hexose accumulation. Clearly, the equivalent information 
is still missing in citrus fruit. In the following, photoassimilate 
movement and distribution, as well as the activities of sugar-
metabolizing enzymes and their protein levels are described 
for the various fruit tissues (Figure 3). In most of the studies, 
the activities of the various forms of invertases are defined by 
their pH optima and solubility. Herein, alkaline/neutral-soluble 
invertase is referred to as cytosolic invertase, acid-soluble 
invertase as vacuolar invertase, and acid-insoluble invertase as 
cell-wall invertase (Roitsch and Gonzalez, 2004).

Vascular Bundle
14C-photoassimilates, mostly as sucrose, were first detected in the 
dorsal vascular bundle, which seems to be the major transporting 
bundle, and to a lesser extent in the septal and central vascular 
bundles as well (Figure 1) (Koch, 1984; Koch and Avigne, 
1990; Hiratsuka et al., 2017). Using pulse-chase experiments, 
maximal radiolabel was recovered after 6 h of labeling, but it 
was remarkably reduced after 24 h. Companion cells, phloem 
parenchyma and sieve elements are usually connected through 
plasmodesmata, thus allowing relatively rapid sugar movements. 
As this movement is slowed down in the albedo and pulp tissues, 
it can be assumed that temporal storage of sugars occurs in the 
companion cells/phloem parenchyma. The activity of vacuolar 
and cytosolic invertases, as well as of SuSy, might well be indicative 
of such storage. Indeed, SuSy activity was relatively high in the 
vascular bundle, especially during high sugar translocation, and 
the protein was strongly immunolabeled in the companion cells 
(Figure 3) (Lowell et al., 1989; Tomlinson et al., 1991; Nolte and 
Koch, 1993b; Hiratsuka et al., 2017). Acid and soluble invertase 
activities were also relatively high in the vascular bundle (Lowell 
et al., 1989; Tomlinson et al., 1991), supporting this notion. Cell-
wall invertase was also present in the vascular bundle (Lowell 
et  al., 1989), but this might represent apoplasmic movement 
from the vascular bundle into the surrounding albedo cells.

Albedo Cells
The vascular bundle terminates near the segment epidermis. 
However, albedo cells are present between the bundle and the 
segment epidermis, and therefore phloem unloading is expected 
to occur primarily into albedo cells before sugar reaches the pulp 

FIGURE 3 | Possible mechanism of sugar transport and metabolism in citrus fruit. Schematic presentation showing the possible paths of sucrose movement 
and hydrolysis in the various fruit tissues. Suc, sucrose; Glu, glucose; Fru, fructose; UDP-Glu, UDP glucose; V, vacuole; SUSY, sucrose synthase; VINV, vacuolar 
invertase; CWINV, cell-wall invertase; CINV, cytosolic invertase;  plasmodesmata.

https://www.frontiersin.org/journals/plant-science#articles
https://www.frontiersin.org/journals/plant-science/
www.frontiersin.org


Primary Metabolism in Citrus FruitSadka et al.

6 September 2019 | Volume 10 | Article 1167Frontiers in Plant Science | www.frontiersin.org

tissue (Figure 3) (Tomlinson et al., 1991). In young fruitlets 
and fruit, the albedo is the major tissue; cell division terminates 
within 4–5 weeks post-anthesis, and fruit growth during stage II 
is achieved by pulp expansion (Bain, 1958). Therefore, it might be 
assumed that most of the sugar in the albedo is transported, while 
only a minor part of it is required for albedo cell metabolism and 
development. A considerable amount of sucrose and hexoses 
are found in albedo cells (Lowell et al., 1989; Hiratsuka et al., 
2017). Pulse-chase experiments demonstrated that most of the 
radiolabel remains in the post-phloem compartment, i.e., albedo 
cells, for about 24 h before reaching the pulp tissues, juice sac 
and segment epidermis (Koch and Avigne, 1990). This slowing 
of sugar movement could indicate that most of the transport is 
via the apoplasmic path. The presence of insoluble acid invertase 
activity could provide an indication for this type of unloading; 
such activity has been detected in albedo cells, although at a 
lower level than in other tissues—the vascular bundle, segment 
epidermis, and juice sacs (Tomlinson et al., 1991). In addition, 
the albedo contained considerable activities of SuSy, vacuolar 
invertase and cytosolic invertase (Lowell et al., 1989; Kubo et  al., 
2001; Hiratsuka et al., 2017); in fact, the activity of vacuolar 
invertase was strongest in the albedo compared to other fruit 
tissues, indicating active storage of sucrose/hexoses in the albedo 
after unloading. Obviously, the presence of plasmodesmata and 
a symplasmic pathway between the vascular bundle and albedo 
cells cannot be ruled out at this stage.

Segment Epidermis
As already noted, the segment epidermis provides a continuous 
layer with the juice sac epidermis (Figure 1). It is considered part 
of the transport tissues, and therefore enzymatic activities are 
sometimes reported for the vascular bundle and segment epidermis 
together (Lowell et al., 1989), although in other cases they are 
separated (Tomlinson et al., 1991; Kubo et al., 2001; Hiratsuka et al., 
2017). A considerable percentage, about 30%, of the total radiolabel 
could be recovered in the epidermis, with maximal accumulation 
between 24 and 48 h after feeding in a pulse-chase experiment 
using grapefruit (Citrus × paradisi) (Koch and Avigne, 1990). 
With continuous labeling, about 50% of the total radiolabel was 
recovered in the segment epidermis within 24 h. However, when 
radiolabeled sugars were quantified in Satsuma mandarin after 
48 h of feeding with 14CO2, the segment epidermis displayed the 
lowest amount per fresh weight or per fruit (Hiratsuka et al., 2017). 
These discrepancies could be due to different experimental designs 
or reflect cultivar differences. Regardless, the segment epidermis 
provides a strong sink, and movement of photoassimilates from this 
sink to the juice sac cells cannot be ruled out. Sucrose hydrolysis 
in the segment epidermis was mediated by relatively high activities 
of SuSy and soluble invertase (Figure 3) (Tomlinson et al., 1991; 
Kubo et al., 2001; Hiratsuka et al., 2017). The activities of vacuolar 
and cell-wall invertases were not reported, and it might therefore 
be assumed that most of the cell-to-cell movement is through the 
symplastic pathway.

Juice Sac Stalk
Photoassimilates were detectable in the stalk of the juice sacs 
as early as 6 h after 14CO2 feeding, as found by pulse-chase 

experiment. However, with continuous exposure, the kinetics of 
radioactivity accumulation were higher between 24 and 48 h of 
exposure (Koch and Avigne, 1990). Sugar-metabolizing enzymes 
were not monitored in the stalk separately from the juice sac, but 
the same mechanisms are likely to be operating in both parts of 
the juice sacs.

Juice Sacs
As the edible part of the fruit, sugar metabolism and transport 
in the juice sac have received more attention than in other fruit 
parts. Photoassimilate transport proceeds to the inner part of the 
juice sac (Figure 3). Following 1 h of 14CO2 feeding to a source 
leaf next to grapefruit fruit, and 1 week of translocation, about 
60% of the label was found in the juice sacs, with similar results 
in Satsuma mandarin (Koch and Avigne, 1984; Hiratsuka et al., 
2017). A maximal rate of radiolabel accumulation in pulse-chase 
experiments was reached between 24 and 48 h of labeling (Koch 
and Avigne, 1990). Movement from the stalk to the distal part 
of the juice vesicle is relatively slow, and may take up to 96 h in 
the case of pomelo juice vesicles, which can reach 3 cm in length 
(Goldschmidt and Koch, 1996). Interestingly, whereas in grapefruit 
juice sacs, most of the labeled assimilates were recovered as 
sucrose, in Satsuma mandarin, fructose was predominant (Lowell 
et al., 1989; Hiratsuka et al., 2017). The accumulation of sucrose 
per fresh weight peaked in the juice sacs during stage II of fruit 
development (Lowell et al., 1989). Sucrose hydrolysis seemed to 
be mediated by all enzymes, as the activity of SuSy and that of the 
three forms of invertase were detected in the juice sacs (Echeverria 
and Valich, 1988; Lowell et al., 1989; Echeverria, 1992; Kubo et al., 
2001; Hiratsuka et al., 2017). However, most studies showed that 
the activity of vacuolar invertase was relatively high, followed by 
SuSy activity. The activity of cell-wall invertase was also detected, 
but at a lower level, and soluble invertase activity was lowest. The 
relatively slow sugar transport in the juice sacs suggests diffusion. 
The presence of plasmodesmata has so far not been demonstrated, 
and cell-to cell movement might also follow a symplasmic 
pathway. Considering the relatively high activity of the vacuolar 
invertase, temporal storage and compartmentalization of sugars 
should occur during transport. Moreover, as the activity of cell-
wall invertase was also demonstrated, apoplasmic movement 
cannot be ruled out, and it might also play a role in temporal 
storage. Lowell et al. (1989) indicated that young fruit might 
behave differently than mature ones, as the former displayed 
uphill transport in terms of sugar concentration whereas fully 
grown fruit displayed downhill transport (Lowell et al., 1989). 
Interestingly, out of the six SuSy genes in the citrus genome, two 
were induced in juice sacs during development, with one of them 
induced in the segment epidermis as well, suggesting that SuSy acts 
in sucrose mobilization within the juice sacs (Komatsu et al., 1999; 
Islam et al., 2014). As expected, invertase activity in all cellular 
compartments was reduced toward fruit maturation, in good 
correlation with the reduction in the invertase transcripts (Lowell 
et al., 1989; Katz et al., 2011). The activity and transcript levels of 
sucrose phosphate synthase genes were induced in Satsuma fruit 
juice sacs toward maturation, in accordance with an increase in 
sucrose level; however, in grapefruit, enzyme activity was induced 
from stage I to stage II of fruit development, and decreased toward 
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maturation (Lowell et al., 1989; Komatsu et al., 1996; Komatsu 
et al., 1999). This might explain the difference in sucrose levels 
between the two cultivars, as grapefruit accumulates less sucrose 
than Satsuma mandarin. Sucrose phosphate phosphatase was 
also induced during later stages of fruit development, suggesting 
that sucrose accumulation did not result only from translocation 
from the leaves but also from active synthesis within the juice 
sac cells (Komatsu et al., 1999; Katz et al., 2011). Nonutilized 
sucrose is stored in the vacuole and therefore, sucrose transport 
across the tonoplast might well play a role in regulating its levels 
within the cell and even its unloading rate. Sucrose and hexose 
uptake into tonoplast vesicles of sweet lime (Citrus limetta) was 
not induced by ATP, suggesting facilitated diffusion (Echeverria 
et al., 1992; Echeverria et al., 1997). Inclusion of acid invertase 
protein in the vesicles induced sucrose uptake, suggesting that 
sucrose hydrolysis by invertase or chemical acid hydrolysis within 
the vacuole provided the driving force for its uptake (Echeverria 
et al., 1992; Echeverria et al., 1997). An endocytic mechanism 
for sucrose transport across the tonoplast was also suggested 
(Etxeberria et al., 2005).

THE INTERCONVERSION OF FRUCTOSE-
1-PHOSPHATE AND FRUCTOSE-1,6-
BIPHOSPHATE, A CENTRAL STEP 
CONNECTING SUGAR AND ORGANIC 
ACID METABOLISM

While being transported into the fruit, sucrose can undergo 
metabolism in a few directions. Hexose phosphate synthesis is 
an important metabolic step, with the reversible conversion of 
fructose-1-phosphate (Fru-1-P) and fructose-1,6-biphosphate 
(Fru-1,6-P2) providing a link between sugar and organic 
metabolism via glycolysis/gluconeogenesis pathways (Figure 2) 
(Plaxton, 1996; Fernie et al., 2004). The reaction is catalyzed by 
two independent mechanisms (Uyeda, 1979; Hofer, 1987; Yang 
et al., 2014). One involves two enzymes, an ATP-dependent 
phosphofructokinase (PFK) catalyzing the glycolytic conversion 
of Fru-6-P to Fru-1,6-P2, and fructose-1,6-bisphosphatase 
(FBPase), catalyzing the reverse, gluconeogenic reaction. The 
other mechanism is composed of one bidirectional enzyme, 
pyrophosphate-dependent PFK (PFP) composed of two subunits, 
PFPα and PFPβ (Mertens, 1991; Muchut et al., 2019). Whereas 
PFK is generally considered ubiquitous, PFP has been described 
in prokaryotes and lower eukaryotes, including some bacteria, 
and some protozoan parasites (Bapteste et al., 2003). In addition, 
it is found in higher plants, where it is expressed in various tissues 
(Muchut et al., 2019 and references therein). While plants contain 
both PFP and PFK, bacteria and protozoa appear to have either 
one or the other, and yeast and animals contain only the latter 
(Bapteste et al., 2003). PFK is considered the more abundant 
enzyme, but its activity in plants is less characterized than that 
of PFP, due to its instability upon purification. PFK is found in 
both the cytosol and the plastids, whereas PFP is a cytosolic 
enzyme. Several hypotheses have been raised to explain the role 
of PFP in plants, including activation during stress (Krook et al., 

2000; Fernie et al., 2001; Mutuku and Nose, 2012; Panozzo et al., 
2019). Transgenic up/downregulation of PFP in tobacco, potato, 
and sugarcane resulted in only minor alternations in plant 
growth and metabolism (Hajirezaei et al., 1994; Paul et al., 1995; 
Nielsen and Stitt, 2001; Wood et al., 2002a; Wood et al., 2002b; 
Groenewald and Botha, 2008; Besir and Cuce, 2018). However, 
reduced expression of PFP in Arabidopsis resulted in delayed 
development, while higher expression resulted in induced 
development (Lim et al., 2009). Moreover, knockout mutants 
suggested that PFP is required for adaptation to salt and osmotic 
stress during germination and seedling growth (Lim et al., 2014). 
While Fru-2,6-P2 is the major PFK activator in microorganisms 
and animals, in plants it does not activate PFK but rather PFP 
(Stitt, 1990). Citrate was found to be an inhibitor of PFP activity, 
especially in the glycolytic direction (Carnal and Black, 1983), 
and was suggested to affect the affinity of Fru-2,6-P2 binding 
(Van Praag, 1997a; Van Praag et al., 1998).

PFP was detected in the juice sac cells of Valencia orange 
and grapefruit along with PFK and FBPase (Echeverria and 
Valich, 1988; Van Praag et al., 1999). While grapefruit PFP 
was strongly induced by Fru-2,6-P2 in the forward reaction, 
it was barely affected by the activator in the reverse reaction 
(Figure 2) (Van Praag, 1997a; Van Praag, 1997b; Van Praag 
et al., 1998), as also demonstrated for potato, pineapple and 
tomato fruit (Van Schaftingen et al., 1982; Kobayashi et al., 
1992; Tripodi and Podesta, 1997). It was also shown that citrate, 
and to some extent other intermediates of the tricarboxylic 
acid cycle, inhibit the glycolytic reaction of PFP in grapefruit, 
whereas the gluconeogenic reaction was barely affected (Van 
Praag, 1997a). Reduction in PFP activity in the ovaries of 
open versus closed flowers paralleled the reduction in protein 
levels of the two subunits, suggesting that the enzyme activity 
was regulated by its protein levels in the ovary (Kapri, 2003). 
However, more complex relationships were detected in the 
fruit, demonstrating the involvement of other mechanisms in 
regulating PFP activity. Recently, the two subunits of citrus PFP 
were coexpressed and expressed separately in bacteria (Muchut 
et al., 2019). Monomeric forms of both subunits were able to 
catalyze phosphorylation of Fru-1-P, but when coexpressed, 
the heteromeric form generated activity that was two orders of 
magnitude larger. While the activity of the heteromeric form 
was induced by Fru-2,6-P2, that of the β-monomer was repressed 
and the activity of the α-monomer was barely affected.

CITRATE METABOLISM AND VACUOLAR 
PH HOMEOSTASIS IN CITRUS FRUIT

Citrate metabolism, transport and accumulation in citrus fruit 
have been recently reviewed (Hussain et al., 2017). Here they 
are described only briefly, with an emphasis on the biochemistry 
and control of transport mechanisms associated with proton and 
citrate translocation which have been characterized in citrus fruit.

Pulp Acidity and Citrate Level
Pulp acidity in citrus fruit is determined by two separate 
processes, citrate content in the vacuole of the juice sac cell 
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and vacuolar acidification, which can reach 0.3 M and pH 
2.0, respectively in lemon and other acidic cultivars (Hussain 
et al., 2017). Although separate, these two processes are 
bioenergetically coregulated (Sadka et al., 2000a; Sadka et  al., 
2000b). During the first half of fruit development, citrate 
accumulation is accompanied by proton influx which reduces 
the vacuolar pH. Citrate has three dissociation constants (pKa) 
— 6.39, 4.77 and 3.14 — and in the vacuole it acts as a buffer by 
binding protons as they accumulate and reducing the pH, thus 
providing a driving force for additional proton influx (Müller 
and Taiz, 2002; Shimada et al., 2006). On the other hand, proton 
influx provides a driving force for citrate uptake, and probably 
also for its synthesis. When the vacuolar pH of Navel orange 
juice sacs was below 3.5, two forms of citrate were detected, 
citrateH3 and citrateH2

-
 (Figure 4) (Shimada et al., 2006). 

CitrateH2− and citrateH3− could be detected in pH ≥ 3.5 and pH 
≥ 5.0, respectively. During the second half of fruit development, 
when the acid level declines, citrate removal is accompanied by 
proton efflux and increasing pH. There is a good correlation 
among different citrus cultivars between the level of juice pH 
(representing mostly vacuolar pH) and citric acid concentration 
(Etienne et al., 2013), and there are no reported cases in which 

pulp pH and citrate level are both low; therefore, altering 
citrate concentration will change pH homeostasis, and vice 
versa. However, early in fruit development, the two processes 
can be distinguished (Sadka et al., 2000a). Citrate accumulation 
in Minneola tangelo (Citrus × tangelo) starts in early June and 
continues for approximately 3 weeks; during this time, pH is 
slightly increased, probably due to the dilution effect associated 
with cell division. Significant pH reduction is only detected 
after 4 weeks, suggesting that the buildup of some citrate 
accumulation is required to induce proton influx into the 
vacuole. This also suggests that citrate accumulation precedes 
proton accumulation. In other fruit of low and moderate acidity 
levels, such as melons, i.e., pH 4.5–6.5, some inbred lines with 
higher pH and higher citrate + malate content than their parents 
were reported (Burger et al., 2003).

Although citrate is the major organic acid accumulated in 
citrus fruit, accounting for 90% of the total acids, the synthesis 
and accumulation of other organic acids have also been reported 
(Albertini et al., 2006). For instance, in orange, there is a transient 
increase in quinic and oxalic acids early in fruit development. 
Malic acid also accumulates to some extent during the maturation 
of lemon, lime and orange fruit.

FIGURE 4 | Glycolysis, tricarboxylic acid metabolism, their metabolic connections to amino acids, and citrate and pH homeosthasis in the juice sac cell. The 
GABA shunt connecting glutamate and 2-oxoglutarate (I), the V-type H+-ATPAse (II), the H+-pyrophosphatase (III) and the Citrate/H+ symporter (IV) are shaded. 
H+/ATP coupling ratio and its pH dependence are indicated. ∆pH (yellow triangle) across the tonoplast is generated by the activities of the H+-ATPase and the 
H+-PPiase, and is induced by Mg+2 and reduced by BAF and nitrate. V-ATPase is inhibited by bafilomycin (BAF) and nitrate. The Citrate/H+ symporter is driven 
by the acidification of the vacuole (pH decrease). The relative distribution of the various forms of citrate under different vacuolar pH values are shown in the inset 
figure, as explained in the text. Fru-1,6biP, fructose 1,6-bisphosphatase; DiHOAcP, dihydroxyacetone phosphate; 3-PGIAld, 3-phosphoglyceraldehyde; 1,2-diPGA, 
1,2-diphosphoglycerate; 3-PGA, 3-phosphoglyceric acid; 2-PGA, 2-phosphoglyceric acid; PEP, phosphoenolpyruvate; Pyr, pyruvate; Ac-CoA, acetyl-Coenzyme 
A; 2-OXG, 2-oxoglutarate; Succ-CoA, succinyl-coenzyme A; OAA, oxaloacetate; 2OX, 2-oxoglutarate; GABA, γ‐aminobutyric acid; SSA, succinic semialdehyde; 
PGlyMut, phosphoglycerate mutase; PyrKin, pyruvate kinase; PyrDehyd, pyruvate Dehydrogenase; CS, citrate synthase; IDH, isocitrate dehydrogenase; 
2-OGDehyd, 2-oxoglutarate dehydrogenase; Succ-CoA Syn, succinyl-CoA synthase; SuccDehyd, succinate dehydrogenase; MalDehyd, malate dehydrogenase; 
PEPCar/Kin, phosphoenolpyruvate carboxykinase; GOT, glucooxaloacetate transaminase; GPT, glucopyruvate transaminase; GOGAT, glutamine oxoglutarate 
aminotransferase; GS, glutamine Synthetase; GAD, glutamate decarboxylase; GABAT,4-aminobutyrate-2-ketoglutarate transaminase; SSADH, succinic 
semialdehyde dehydrogenase.
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Transport of Citrate and Protons Across 
the Tonoplast
So far, three mechanisms associated with proton movement 
across the tonoplast have been identified and characterized in 
citrus juice sac cells (Müller et al., 1996; Echeverria et al., 1997; 
Marsh et al., 2000; Shimada et al., 2006): V-type H+-ATPase, 
the major enzyme driving proton influx; H+-pyrophosphatase; 
and citrate/H+ symporter, most likely acting to remove 
citrate−2 out of the vacuole along with 2H+ (Figure 4). Other 
transport mechanisms, associated with citrate transport across 
the mitochondrial membrane and citrate movement into the 
vacuole, have been predicted for other plant species, but not for 
citrus fruit (Etienne et al., 2013). A P-type ATPase, homologous 
to the petunia PH5 and PH8, was suggested to play a role in 
vacuolar hyperacidification (Aprile et al., 2011; Shi et al., 2015). 
PH5 and PH5 were recently shown to be highly expressed in 
acid cultivars and downregulated in acidless cultivars, due 
to mutations in the MYB, HLH and/or WRKY transcription 
factors (Strazzer et al., 2019). While PH5 and PH8 were shown to 
localize to the vacuole in petunia, their membrane localization 
and biochemical properties in citrus require further research 
(Faraco et al., 2014; Verweij et al., 2008).

The identification and characterization of vacuolar transport 
mechanisms require isolating purified tonoplast vesicles or intact 
vacuoles (Lin et al., 1977). An array of experimental tools can 
then be used to study transport across the membranes, such as 
radiolabeled molecules (citrate), pH-dependent fluorescent dyes 
such as acridine orange or quinacrine (Stadelmann and Kinzel, 
1972). An acidic-inside can be generated in isolated tonoplast 
vesicles or intact vacuoles through the activation of the V-type 
H+-ATPase or the H+-pyrophosphate with Mg–ATP or Mg–
PPi and the use of inhibitors (bafilomycin A) or protonophores 
(gramicidin) to alter the pH gradient. For example, the addition 
of bafilomycin A inhibits the V-ATPase activity while gramicidin 
permeabilize the membrane to protons, thus abolishing the DpH 
across the membrane without affecting the pump hydrolytic 
activity. Tonoplast vesicles of juice sacs were isolated and 
purified from acidic cultivars and their acidless counterparts. 
14C-citrate uptake of acidless pomelo vesicles was about 20% 
higher than that of acid pomelo, eliminating the possibility that 
the difference in fruit acidity between these two cultivars was 
due to citrate transport into the vacuole (Canel et al., 1995). The 
uptake was enhanced by ATP (Figure 4) (Echeverria et al., 1997). 
Generation of a pH gradient was investigated in tonoplast vesicles 
of acid (Citrus aurantifolia) and acidless lime. As expected, it was 
induced by Mg–ATP, while bafilomycin and nitrate inhibited 
ATP hydrolysis and abolished the pH-gradient formation (Figure 
4) (Brune et al., 2002). Sweet lime tonoplast vesicles appeared to 
generate a DpH four times faster than those of acid lime, but they 
had higher H+ leakage following H+-ATPase inhibition by EDTA 
than the acid lime, possibly representing their limited in-vivo 
capacity for H+ retention. The lemon vacuolar H+-ATPase was 
purified and characterized by Taiz’s group (Müller et al., 1996; 
Müller et al., 1997; Müller et al., 1999; Müller and Taiz, 2002). 
They revealed that, in fact, two tonoplast-bound ATPase activities 
exist, a nitrate-sensitive V-type ATPase that is partially inhibited 

by vanadate, and a vanadate-sensitive ATPase that is partially 
inhibited by nitrate (Müller and Taiz, 2002). These results should 
be taken with caution because of the possible cross-contamination 
of the tonoplast vesicles with other membrane vesicles. Nitrate 
inhibition seemed to be dependent on the time of tonoplast vesicle 
preparation; for the same phenological stage, inhibition peaked 
during the spring and was minimal during the autumn–winter, 
suggesting an environmental effect resulting in seasonal changes in 
membrane lipid composition (Müller et al., 1999). Moreover, the 
H+/ATP coupling ratio varied between 1 to 2 as the DpH increased, 
displaying a pH-dependent slippage, where the hydrolytic activity 
and the H+ transport are partially uncoupled. Further, the fruit 
V-ATPase reconstituted into artificial proteoliposomes showed a 
steeper pH gradient than the corresponding reconstituted epicotyl 
enzyme (Müller et al., 1997). Overall, the following characteristics 
seem to allow lemon fruit V-ATPase to generate a steep pH 
gradient: (i) variable coupling, (ii) low pH-dependent slip rate, 
(iii) low proton permeability of the membrane, (iv) lower H+/ATP 
stoichiometry, and (v) improved coupling by citrate, the major 
accumulated organic acid, which also enhance the enzyme’s ability 
to generate a pH gradient. The pyrophosphatase activity in acid 
lime fruit was much lower than that of H+-ATPase, suggesting 
the latter as the major mechanism for proton influx (Echeverria 
et al., 1997). Tonoplast vesicles isolated from juice cells of ‘Valencia’ 
oranges (Citrus sinensis L.) displayed similar V-type ATPase and 
V-PPiase activities, although a steady-state was reached faster with 
ATP as substrate. At a DpH of 3 units, V-PPiase synthesized PPi in 
the presence of Pi, indicating that mature orange juice cells acted 
as a source of PPi, providing a mechanism for recovery of stored 
energy in the form of the pH gradient across the vacuole during 
later stages of development and postharvest storage (Marsh et al., 
2000). In summary, in light of the possible presence of an additional 
tonoplastic H+ transport mechanism, P-ATPase, vacuolar proton 
homeostasis and transport across the tonoplast require further 
biochemical research.

A vacuolar citrate/H+ symporter, CsCit1 (Figure 4), 
homologous to the Arabidopsis decarboxylate transporter, was 
characterized in orange fruit; its mRNA and protein levels 
coincided with the acid-decline stage, suggesting its role in 
citrate efflux (Shimada et al., 2006). Yeast cells expressing the 
CsCit1 displayed electroneutral coupled citrate–H+ cotransport 
with a stoichiometry of 1citrate/2H+.

AMINO ACID HOMEOSTASIS  
IN CITRUS FRUIT

Amino acids have been studied in citrus fruit in relation to the 
nutritional value of the juice provided the motivation, mostly for 
early workers, to analyze the levels of free amino acids and their 
patterns of accumulation during fruit development and storage 
(reviewed in Sinclair, 1984). The exposure of fruit to stress on-the-
tree and cold or heat treatments during storage was associated 
with the accumulation of several amino acids. Glycolysis and 
the tricarboxylic acid cycle are metabolically associated to 
amino acid metabolism (Figure 4), its relation to citrate decline 
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and the induction of a γ-aminobutyric acid (GABA) shunt 
during the second half of fruit development. Moreover, the 
possible relationships between amino acid accumulation and 
Huanglongbing (HLB) resistance/tolerance mechanisms have 
been recently investigated (Killiny and Hijaz, 2016; Killiny et al., 
2018; Setamou et al., 2017; Yao et al., 2019).

Changes in Amino Acid Metabolism 
During Fruit Development and Upon 
External Stimuli
In general, all of the amino acids are detected in the juice of mature 
fruit, with aspartic acid, asparagine, serine, glutamic acid, proline 
and GABA being the more abundant (reviewed in Sinclair, 1984). 
A gradual increase in most of the free amino acids was detected 
during fruit development and toward maturation of Valencia 
orange (Sinclair, 1984). This increase is associated with citrate 
decline and it is common to all citrus cultivars (Kimura et al., 
2017). However, different trends were detected in Navel oranges 
(Citrus × sinensis), with most amino acids and their metabolites 
decreasing from stage II to III of fruit development (Katz et al., 
2011). A comparative analysis of total amino acid contents among 
various citrus cultivars showed lemon and mandarin with overall 
higher contents of essential amino acids than pomelo, grapefruit 
or sweet orange (Wang et al., 2016). Moreover, lemon displayed 
higher levels of amino acids with bitter taste, such as histidine, 
phenylalanine and valine, as well as acidic amino acids, aspartic 
acid and glutamic acid.

Following harvest, citrus fruit are usually subjected to 
relatively long storage periods at low temperatures. However, 
heat treatments, which vary from 37°C for 24 h to ~50°C 
for a few minutes, prior to storage, are common to reduce 
pathogenic agents, as well as to induce resistance to chilling 
and pathogens. The effects of such treatments on amino acid 
contents and metabolism were investigated, with conflicting 
results. In Satsuma mandarins, the contents of most amino acids 
were reduced or remained unchanged following heat treatment 
and only ornithine showed a consistent increase following the 
treatment (Yun et al., 2013). On the other hand, Matsumoto and 
Ikoma (2012) found that most Satsuma mandarin amino acids 
were heat-responsive, showing a remarkable contents increase 
during postharvest storage at 20°C or 30°C, but not at 5°C or 
10°C. However, two amino acids, ornithine and glutamine, 
were cold-responsive, suggesting active metabolism during 
postharvest cold storage.

Changes in amino acid metabolism during fruit development 
of various cultivars and in the presence of external stimuli 
have been studied mostly by transcriptomic and metabolomic 
analyses. The activation of the GABA shunt, a major route for 
citrate catabolism (Figure 4), was identified in a transcriptomic 
analysis (Cercos et al., 2006) and confirmed by proteomics (Katz 
et al., 2007); these analyses identified an increase in the transcript 
of glutamate dehydrogenase, aspartate/alanine aminotransferase, 
glutamate dehydrogenase, glutamine synthase, GABA amino 
transferase and succinate semialdehyde dehydrogenase during 
fruit development, and the presence of their corresponding 
proteins during the declining-citrate stage of fruit development 

(Cercos et al., 2006; Katz et al., 2007; Katz et al., 2010; Katz et al., 
2011; Lin et al., 2015). Moreover, use of an aconitase inhibitor, 
which induces citrate accumulation, resulted in induced activities 
of some of the enzymes of the GABA shunt (Degu et al., 2011). 
In addition, proteins of most amino acid-synthesis enzymes were 
induced either from early stage II to stage II or from stage II to 
stage III of fruit development, including pathways leading to the 
synthesis of cysteine, glycine, serine, leucine, valine, asparagine, 
aspartate, alanine, ornithine and glutamine (Katz et  al., 2011). 
Induction of amino acid metabolism was suggested to play a role 
in the accumulation flavor-associated volatiles (Yu et al., 2015). 
Comparative transcriptomic analysis of high- and low-citrate 
oranges showed elevated transcript levels of phenylalanine-, 
arginine-, proline-, cysteine- and methionine-metabolism 
genes in the high-citrate orange (Lu et al., 2016). Cold storage 
of mandarins resulted in major alterations in amino acid 
metabolism, including the biosynthesis of proline and arginine, 
and significant enhancement of the catabolism of branched-
chain amino acids (Yun et al., 2010; Tietel et al., 2011; Yun et al., 
2012). Catabolism of the branched-chain amino acids leucine, 
isoleucine, and valine releases acetyl-CoA, providing a precursor 
for amino acid-derived volatiles that are associated with off-flavor 
development during fruit storage (Tietel et al., 2011). Water stress 
also induced alterations in the amino acid metabolism suggested 
to be involved in defense mechanisms against stress (Oliveira et 
al., 2015).

Amino Acids and Defense Against HLB
Citrus HLB, caused by the phloem sap-restricted bacterium 
Candidatus Liberibacter, is a serious production threat to the 
citrus industry in various regions of the world. The bacteria are 
transmitted by phloem sap-piercing citrus psyllids while they 
feed, mostly on young expanding vegetative shoots. Different 
citrus cultivars show varied susceptibility/tolerance to HLB. The 
differential response seems to be associated with psyllid feeding 
preferences and with plant tolerance to the bacteria. Based 
on controlled graft-inoculation experiments, cultivars were 
classified into three major groups, sensitive, moderately tolerant 
and tolerant, each showing different symptoms, from severe leaf 
chlorosis, depressed growth and death in the sensitive cultivars, 
to fewer and lesser severe symptoms in the tolerant cultivars. 
The bacteria appeared to be auxotrophic for a few amino acids, 
supplied by their host. The bacteria were suggested to affect free 
amino acid availability by altering the expression of amino acid 
storage proteins, at least in the insect host. To assess whether 
amino acid metabolism plays a role in the variable citrus 
tolerance to HLB, metabolomics analyses were performed in 
various cultivars on healthy and infected trees. Although most of 
the analyses were performed with phloem sap, and not the fruit, 
we include their brief description, as some fruit symptoms might 
also be associated with changes in amino acid metabolism. In a 
metabolic survey of phloem sap and leaves of citrus cultivars 
showing varied sensitivity/tolerance to HLB, the levels of all 
amino acids were elevated in the tolerant cultivars (Killiny and 
Hijaz, 2016; Killiny et al., 2018). Comparative analyses of amino 
acid contents in the phloem sap of bacterium-permissive (Citrus 
and psyllid) and non-permissive (non-Citrus) hosts showed 
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that seven amino acids, mostly of the glutamate family, were 
associated with susceptibility, whereas five amino acids, mostly 
of the serine family, were associated with tolerance/resistance 
(Setamou et al., 2017). Moreover, high proline-to-glycine ratios 
were associated with bacterium-permissive hosts. Overall, the 
level of consistency in these studies in relation to amino acid 
composition in sensitive/tolerant plant species was not high. 
HLB-symptomatic Valencia orange fruits showed an overall 
increase in the level of most detected amino acids as compared 
to no symptomatic fruit, possibly due to protein degradation 
(Yao et al., 2019).

CONCLUDING REMARKS

Along with secondary metabolites, products of primary 
metabolism — carbohydrates, organic acids, amino acids, 
fatty acids, and their polymeric forms — provide important 
components to fruit taste, aroma and nutritional value. Fruit 
vary in their structure, and this variation affects developmental, 

as well as primary and secondary metabolic processes. The juice 
sacs — the major pulp component in citrus — are unique among 
fruit. In this review, we summarize how this unique structure 
affects photoassimilate translocation, movement, metabolism, 
and accumulation. Surprisingly, despite intensive research on 
many aspects of citrus fruit development and metabolism, the 
mechanisms of photoassimilate unloading have so far not been 
investigated as in other fruit and sinks, although the research 
tools are quite well-developed. Here, sugars, organic acids, and 
amino acids are metabolically connected, and special attention is 
given to the connecting steps, i.e., the interconversion of Fru-6-P 
and Fru-1,6-P2, and the GABA shunt. In summary, this review 
attempts to summarize research of primary metabolism in citrus 
fruit, emphasizing open questions deserving further research.
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