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ABSTRACT

Weighted gene co-expression network analysis (WGCNA) is a widely used software tool
that is used to establish relationships between phenotypic traits and gene expression data. It
generates gene modules and then correlates their first principal component to phenotypic
traits, proposing a functional relationship expressed by the correlation coefficient. However,
gene modules often contain thousands of genes of different functional backgrounds. Here,
we developed a stochastic optimization algorithm, known as genetic algorithm (GA), opti-
mizing the trait to gene module relationship by gradually increasing the correlation between
the trait and a subset of genes of the gene module. We exemplified the GA on a Japanese
plum hormone profile and an RNA-seq dataset. The correlation between the subset of mod-
ule genes and the trait increased, whereas the number of correlated genes became suffi-
ciently small, allowing for their individual assessment. Gene ontology (GO) term enrichment
analysis of the gene sets identified by the GA showed an increase in specificity of the GO
terms associated with fruit hormone balance as compared with the GO enrichment analysis
of the gene modules generated by WGCNA and other methods.

Keywords: genetic algorithm, plant hormones, Prunus salicina, Japanese plum, RNAseq,

weighted gene co-expression network analysis.

1. INTRODUCTION

W ith the advent of next-generation sequencing (NGS), transcript quantification has become

possible for virtually all living organisms. As a consequence of steep reductions of per-base costs

and progressive technological enhancements (Wadapurkar and Vyas, 2018), the number of studies em-

ploying NGS for transcript quantification has increased steadily (Lachmann et al., 2018). One of the aims of

NGS studies is the detection of gene clusters that change their expression patterns in a co-ordinated manner

throughout different conditions. To do so, a software tool, coined weighted gene co-expression network

analysis (WGCNA) has been developed (Langfelder and Horvath, 2008). WGCNA generates correlation

networks based on gene expression data. Highly interconnected genes are then clustered into modules, based

on a topological overlap measure (Langfelder and Horvath, 2008). Subsequently, the first principal components
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of modules are computed, termed module eigengenes (ME), which then can be correlated to trait data. Based

on the correlation coefficient between MEs and the external traits, modules that likely include genes significantly

impacting the trait of study are identified. WGCNA is a method that has been extensively used, for example, for

the proposal of marker genes associated with Alzheimer’s disease (Miller et al., 2010) or to highlight con-

servation and divergence of gene expression between human and chimpanzee brains (Oldham et al., 2006).

Modern software for the alignment of RNA-seq data to existing genomes (Dobin et al., 2013), coupled

with high-performance computing, has the capability to rapidly align transcripts up to the coding sequence

(CDS) level, rendering datasets of quantified expression (Anders et al., 2015) with hundreds of thousands of

features. Thus, WGCNA often generates modules containing thousands of different CDSs. Although their

corresponding MEs can still be correlated to particular traits, the number of CDSs per module is over-

whelming, exacerbating the identification of marker genes or the comparison between networks. Aiming

at reducing the number of genes in a module, we developed a genetic algorithm (GA).

A GA is a heuristic search method that is capable of detecting a near-optimal solution to a given search

problem via the application of the principles of the theory of evolution (Mitchell, 1996); that is, the GA

gradually increases the quality (fitness) of a collection of solutions over a given number (g) of generations. A

GA initiates the search with a random population of x solutions, followed by natural selection, whereby a

fitness value is assigned to each solution, increasing or decreasing their chances to reproduce with another

‘‘solution’’ (individual) in the population. The reproduction process is characterized by one or more recom-

bination events, generating the next generation of solutions (offspring). Finally, a mutation process may occur

modifying the ‘‘genetic’’ makeup of the offspring. GAs are commonly used for the analyses of biological data,

for example, for multiple sequence alignments (Notredame and Higgins, 1996; Gondro and Kinghorn, 2007),

motif discovery (Wong et al., 2011), RNA structure prediction (Vanbatenburg et al., 1995), etc.

Here, we describe the development of a GA customized for the optimization of CDSs/genes of modules

in respect to a phenotypic trait. The GA successfully narrowed down the set of potential candidate genes to

a number sufficiently small allowing for their individual analysis and concomitantly increased the trait

to gene specificity. We applied our GA on datasets comprising RNA-seq and hormone-associated me-

tabolites from two varieties of Japanese plum fruit during on-the-tree ripening and during postharvest

storage (Farcuh et al., 2017, 2018, 2019). The two cultivars differed in their ripening behavior (Kim et al.,

2015): a climacteric cultivar Santa-Rosa (SR), producing increased levels of autocatalytic ethylene and

respiration rates during fruit ripening, and its nonclimacteric bud sport mutant Sweet Miriam (SM) showing

no ethylene production or high respiration rates during ripening.

2. METHODS

2.1. Datasets acquisition and processing

Datasets for RNA-seq and hormone levels were adopted from Farcuh et al. (2017, 2018, 2019). Pre-

processing and quantification of transcripts and hormones were performed as described therein.

2.2. Weighted gene co-expression network analysis settings

All data were log-transformed for usage with WGCNA. WGCNA version 1.60 was used. Execution of

WGCNA was performed as instructed in Langfelder and Horvath (2008) and the associated tutorial. Soft

thresholding of the adjacency matrix was achieved at b = 17. The manual hybrid model (Fig. S4) was

chosen to generate gene modules.

2.3. Genetic algorithm parameterization

Before the initiation of the GA, all negatively correlated genes to each trait were removed from the

module expression matrix. The GA was run with all parameters set to their respective default values. The

GA was set to achieve an absolute jfitnessj value.

2.4. Gene Ontology term enrichment analysis

For the GO term enrichment analysis, we used Agrigo (http://bioinfo.cau.edu.cn/agriGO/) (Du et al.,

2010; Tian et al., 2017). We performed a singular enrichment analysis against the Phytozome v11.0

P. persica v.2.1 genome.
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2.5. Availability and dependencies

The source code for the GA is available under: https://github.com/toubiana/GENETIC_ALGORITHM

Operating system(s): Platform independent

Programming language: R

The GA operates in R without any dependencies, but we recommend installing package WGCNA for

gene module generation.

3. RESULTS

3.1. Hormones specifically correlated to two module eigengenes

This study is based on datasets of Japanese plums previously published (Farcuh et al., 2017, 2018, 2019).

In brief, gene expression and fruit hormone contents were measured in two cultivars: a climacteric SR and

its nonclimacteric bud-sport mutant SM, during fruit development on-the-tree as well as throughout

postharvest storage and in response to ethylene treatments. Gene expression analyses and contents of

abscisic acid (ABA), ethylene, indole-3-acetic acid (IAA), gibberellins (GA1 and GA3), salicylic acid (SA),

and the cytokinins trans-zeatin (tZ) and its precursor isopentenyl (iP) were performed at 12 different fruit

development stages (Farcuh et al., 2017, 2018, 2019).

Transcripts from RNA-seq sequencing were aligned and quantified at the CDS level against the Prunus

persica genome (Verde et al., 2013, 2017). All 12 storage stages were compared for differentially expressed

CDSs (Anders and Huber, 2010), and a total of 18,714 differentially expressed CDSs were identified.

Subsequently, the relative expression values of all 18,714 CDSs were fed into the WGCNA pipeline

(Methods section). Overall, 18,621 out of the 18,714 transcripts were clustered into 14 modules (Table 1),

whereas 93 CDSs remained unclustered. MEs were computed for all 14 modules and correlated to the

profiles of all 8 hormones. The correlation analysis revealed that all hormones had the strongest positive

correlation to either ME darkslateblue, where the corresponding module contained 2142 CDSs, or ME

turquoise, where the corresponding module contained 4437 CDSs (Fig. 1). The following correlation

coefficients were recorded between ME darkslateblue and ABA = 0.64, ethylene = 0.79, and IAA = 0.77;

and ME turquoise and GA1 = 0.73, GA3 = 0.79, iP = 0.36, SA = 0.94, and tZ = 0.96, respectively (Fig. 1).

3.2. Gene Ontology enrichment analysis of modules darkslateblue and turquoise

The Gene Ontology (GO) initiative was developed to provide a system, in which sets of genes can be

classified hierarchically in a graph-like structure (Harris et al., 2008). GO term enrichment analysis is the

natural successor to WGCNA, whereby genes of modules identified via correlation analysis are analyzed to

establish a functional relationship between the genes and the trait under investigation.

Table 1. Weighted Gene Co-expression Network Analysis Modules

Module Number of CDSs Corresponding number of genes

Module antiquewhite4 1819 1451

Module blue 4465 3449

Module coral1 2047 1521

Module darkslateblue 2142 2142

Module greenyellow 85 77

Module gray60 535 463

Module lightcyan 41 34

Module lightyellow 1651 1245

Module magenta 486 414

Module midnightblue 52 49

Module pink 121 93

Module purple 155 125

Module royalblue 585 533

Module turquoise 4437 3239

CDS, coding sequence.

Bold values correspond to the modules with the strongest correlations to hormones.
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We identified the corresponding genes to all the CDSs within the modules darkslateblue and turquoise

(Supplementary Data S1) and performed GO enrichment analysis (Tables 2 and 3). Genes of module

darkslateblue were categorized into 67 different significant (determined by a false discovery rate multiple

hypothesis testing correction) GO terms, whereas genes of module turquoise were categorized into 58

significant GO terms. In total, 110 different GO terms were represented in both modules.

3.3. Narrowing candidate genes through the application of the genetic algorithm

To optimize the correlation between hormones and the genes within a module, and to reduce the number

of candidate genes, we developed a GA for trait-related gene selection (TRGS). We denoted the matrix of a

gene expression module as Expr of size m · n, where 1 £ i £ m represented conditions (Con) and 1 £ j £ n

genes (Gen). Within a given Expr, the TRGS algorithm identified a subset of genes showing the greatest

correlation coefficient of its first principal component E to a given hormone H. Given Expr, the TRGS

optimization objective can be defined as:

ARGMAXC cor prcomp Expr �‚ C½ �ð Þ‚ Hð Þf g

where C is a subset of genes in the module, Expr[�, C] is the expression matrix narrowed down to C, prcomp

is the first principal component of a matrix, and cor is the Pearson correlation.

A typical GA defines the population (structure and initial set of possible solutions), recombination and

mutation (operators used to search through the space of possible solutions), and the fitness function (the

optimization objective). Following the bio-inspired terminology common to GAs, we will refer to solutions

FIG. 1. ME to hormones correlation heatmap. Heatmap representation of the correlation analysis of 14 MEs and 8

hormones. The lower triangle illustrates the correlation coefficients, where a red rectangle represents a negative

correlation and a blue rectangle a positive correlation. The upper triangle (shaded area) represents the corresponding

p-values. Variables on the x and y axes are ordered as determined by hierarchical clustering. ME, module eigengenes.
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Table 2. Significant Gene Ontology Terms Associated with Module Darkslateblue

Term p FDR

Intracellular part 0.000012 0.001

Cell part 0.000017 0.001

Cytoplasm 0.000012 0.001

Cell 0.000017 0.001

Intracellular 0.0000055 0.001

Purine ribonucleoside monophosphate metabolic process 0.0000056 0.0011

Ribonucleoside monophosphate metabolic process 0.0000056 0.0011

Ribonucleoside triphosphate metabolic process 0.0000056 0.0011

Purine ribonucleoside triphosphate metabolic process 0.0000056 0.0011

ATP metabolic process 0.0000054 0.0011

Small molecule metabolic process 0.0000021 0.0011

Nucleoside triphosphate metabolic process 0.0000067 0.0011

Purine nucleoside triphosphate metabolic process 0.0000056 0.0011

Nucleoside monophosphate metabolic process 0.0000067 0.0011

Single-organism cellular process 0.0000065 0.0011

Purine nucleoside monophosphate metabolic process 0.0000056 0.0011

Organophosphate metabolic process 0.000011 0.0015

Purine ribonucleotide metabolic process 0.000012 0.0015

Ribonucleotide metabolic process 0.000012 0.0015

Purine ribonucleoside metabolic process 0.000014 0.0016

Purine nucleoside metabolic process 0.000014 0.0016

Purine nucleotide metabolic process 0.000021 0.002

Purine-containing compound metabolic process 0.000024 0.002

Nucleoside metabolic process 0.000025 0.002

Ribonucleoside metabolic process 0.000023 0.002

Ribose phosphate metabolic process 0.000024 0.002

Glycosyl compound metabolic process 0.000025 0.002

Organic acid metabolic process 0.000065 0.005

Nucleoside phosphate metabolic process 0.000089 0.0063

Catabolic process 0.000088 0.0063

Oxoacid metabolic process 0.0001 0.0068

Nucleobase-containing small molecule metabolic process 0.00013 0.0086

Nucleotide metabolic process 0.00016 0.01

Organic substance catabolic process 0.00019 0.012

Single-organism catabolic process 0.00023 0.013

Generation of precursor metabolites and energy 0.00023 0.013

Cytoplasmic part 0.00032 0.016

Organonitrogen compound metabolic process 0.0003 0.017

Organelle membrane 0.00054 0.024

Nucleoside diphosphate metabolic process 0.00047 0.025

Intracellular membrane-bounded organelle 0.0012 0.034

Intracellular organelle 0.0014 0.034

Membrane-bounded organelle 0.0012 0.034

Organelle 0.0015 0.034

Endomembrane system 0.0013 0.034

Macromolecular complex 0.00095 0.034

Establishment of localization 0.00071 0.037

Protein localization to membrane 0.0008 0.039

Establishment of protein localization to membrane 0.0008 0.039

Localization 0.00085 0.04

ADP metabolic process 0.0011 0.041

Establishment of protein localization 0.0012 0.041

Purine ribonucleoside diphosphate metabolic process 0.0011 0.041

Single-organism membrane organization 0.001 0.041

(continued)
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of the optimization problem as chromosomes. An overview of TRGS can be seen in Figure 2. TRGS main

components are discussed next.

3.4. Trait-related gene selection initial population

TRGS intakes seven arguments, namely: (1) the expression matrix Expr; (2) the population size ps,

corresponding to the number of chromosomes within a single generation. The default value of ps was 1000

and remained unchanged throughout the algorithm execution. Each chromosome was represented by a

binary vector of size n, where the value ‘‘1’’ represented a ‘‘selected gene’’ and ‘‘0’’ represented an

‘‘ignored gene’’; (3) number of genes ng, representing the number of genes that should be available for

chromosomes in the initial generation (the default is set to 10); (4) crossover events ce, which determined

the number of crossover events that should occur during recombination of two chromosomes (the default is

set to 1); (5) mutation rate mr, which determined the chance of each gene in a chromosome to flip its value

reciprocally (the default is set to 0.001%); (6) number of generations g, which specified the number of

generations TRGS should be running (the default is set to 1000); and (7) the trait to which the subset of

genes should be correlated. As a result, the initial generation was created with chromosomes chrom1,

chrom2.chromk. of length n, where 1 £ k £ ps and where ng random cells of each chromosome were set

to 1 and the rest were set to 0.

3.5. Trait-related gene selection fitness function

The fitness value of each chromosome determined its chances to participate in a reproduction event.

Here, we first selected a subset of columns of the expression matrix corresponding to the selected genes in

each chromosome, for example, Expr[�, Chrom1], Expr[�, Chrom2]. Expr [�, Chromk] (Fig. 2a). The fitness

value was defined as the correlation of the first principal component E of Expr[�, Chromk] to the trait

parameter (Fig. 2b):

Ek = prcomp(Exprm[�‚ Chromk])

Fitness kð Þ = cor(Ek‚ H)

3.6. Trait-related gene selection recombination

Chromosomes with greater fitness have higher chances to participate in a recombination event to gen-

erate chromosomes for the subsequent generation. The GA considered that recombination took place

between two different chromosomes (mother and father chromosome) only. The amount of crossover

events between mother and father chromosomes was determined by parameter ce. The locus l for the

crossover event was determined randomly. At the specified l, the mother and father chromosomes were

Table 2. (Continued)

Term p FDR

Nucleoside diphosphate phosphorylation 0.00093 0.041

Single-organism carbohydrate metabolic process 0.0012 0.041

Single-organism carbohydrate catabolic process 0.0011 0.041

ATP generation from ADP 0.0011 0.041

Nucleotide phosphorylation 0.00093 0.041

Purine nucleoside diphosphate metabolic process 0.0011 0.041

Ribonucleoside diphosphate metabolic process 0.0011 0.041

Carboxylic acid metabolic process 0.00094 0.041

Glycolytic process 0.0011 0.041

Mitochondrial inner membrane 0.0019 0.041

Organelle inner membrane 0.0023 0.043

Mitochondrial membrane 0.0021 0.043

Carbohydrate catabolic process 0.0013 0.046

FDR, false discovery rate.
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Table 3. Significant Gene Ontology Terms Associated with Module Turquoise

Term term_type p FDR

Cytoplasm C 3.6E-26 1.2E-23

Cytoplasmic part C 2.3E-26 1.2E-23

Intracellular C 1.2E-24 2.5E-22

Cell part C 4E-22 5.2E-20

Cell C 4E-22 5.2E-20

Intracellular part C 1.4E-21 1.5E-19

Translation P 5.2E-22 4.5E-19

Peptide metabolic process P 2.6E-22 4.5E-19

Cellular amide metabolic process P 6.7E-22 4.5E-19

Peptide biosynthetic process P 9.3E-22 4.5E-19

Amide biosynthetic process P 9.3E-22 4.5E-19

Structural molecule activity F 2.1E-21 2.4E-18

Ribosome C 1.6E-19 1.3E-17

Macromolecular complex C 1.6E-19 1.3E-17

Ribonucleoprotein complex C 5.3E-19 3.4E-17

Intracellular ribonucleoprotein complex C 5.3E-19 3.4E-17

Intracellular organelle C 1.4E-18 8E-17

Organelle C 1.5E-18 8.1E-17

Structural constituent of ribosome F 1.9E-19 1.1E-16

Organonitrogen compound metabolic process P 1.7E-18 6.7E-16

Organonitrogen compound biosynthetic process P 3.5E-18 1.2E-15

Intracellular nonmembrane-bounded organelle C 3.6E-15 1.7E-13

Nonmembrane-bounded organelle C 3.6E-15 1.7E-13

Endomembrane system C 0.000000011 0.00000049

Nitrogen compound metabolic process P 5.2E-09 0.0000016

Cellular nitrogen compound metabolic process P 6.9E-09 0.0000019

Macromolecule biosynthetic process P 0.000000012 0.000003

Cellular macromolecule biosynthetic process P 0.000000017 0.0000037

Intracellular organelle part C 0.00000037 0.000015

organelle part C 0.0000004 0.000015

Biosynthetic process P 0.00000012 0.000024

Organic substance biosynthetic process P 0.0000003 0.000055

Cellular biosynthetic process P 0.00000037 0.00006

Gene expression P 0.00000035 0.00006

Cellular nitrogen compound biosynthetic process P 0.0000006 0.000092

Protein folding P 0.0000022 0.00031

Endoplasmic reticulum C 0.0000092 0.00033

Membrane-bounded organelle C 0.000016 0.00052

Intracellular membrane-bounded organelle C 0.000016 0.00052

Protein complex C 0.000048 0.0015

Organelle membrane C 0.0001 0.003

Envelope C 0.00013 0.0034

Organelle envelope C 0.00013 0.0034

Establishment of protein localization P 0.00004 0.0054

Protein transport P 0.000059 0.0076

Protein localization P 0.000084 0.01

Cellular process P 0.00012 0.014

Whole membrane C 0.00055 0.014

Mitochondrial part C 0.00062 0.015

RNA binding F 0.000044 0.017

Bounding membrane of organelle C 0.00082 0.02

Membrane protein complex C 0.00097 0.022

Vesicle-mediated transport P 0.00036 0.04

Macromolecule localization P 0.00042 0.045

(continued)
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split, so that the child chromosome chromoffspring was composed of chrommother[1:l] and chromfather[(l + 1):n]

(Fig. 2c). Each offspring generation was composed of the same number of chromosomes corresponding to ps.

3.7. Trait-related gene selection mutation

After the recombination step, each chromoffspring was subjected to a possible mutation event, where each

value in the chromosome could change from 0/1 or from 1/0, respectively, determined by mr (Fig. 2d).

3.8. Trait-related gene selection return values

After the TRGS had run for g generations, it returned a set of binary vectors corresponding to the final

generation (denoted lastpopulation) and the fitness values of each one of them. We also recorded the

average fitness of every generation for further analysis of the algorithm performance.

3.9. Genetic algorithm performance evaluation

We employed the GA on module darkslateblue for hormones ABA, ethylene, and IAA and on module

turquoise for hormones GA1, GA3, iP, SA, and tZ. To test for its performance, the GA was executed 100

times (iterations) for each hormone to its respective module. We recorded the average correlation for each

generation across the 100 iterations and its respective standard deviations (Fig. 3). Unequivocally, the GA

increased the magnitude of correlation over 1000 generations in all 100 iterations. For the final generation,

ABA recorded an average correlation coefficient of 0.97, when correlating its E to a subset of CDSs of

module darkslateblue versus the original value of 0.64 to ME darkslateblue. Further, the greatest correlation

between any CDS in module darkslateblue to ABA was estimated at 0.91 (Table 4). The respective values

for ethylene were 0.98 versus 0.79 and 0.9; for IAA, 0.98 versus 0.77 and 0.98; for ME turquoise, the

respective values for GA1 were 0.94 versus 0.73 and 0.96; for GA3, 0.98 versus 0.79 and 0.96; iP increased

to 0.91 versus 0.36 and 0.62; SA recorded 0.98 versus 0.94 and 0.92; and tZ increased to 0.99 versus 0.96

and 0.95. Other GA-associated performance measures are summarized in Supplementary Figures S1–S3.

3.10. Threshold settings for gene selection

To select for putatively biologically meaningful genes, threshold settings were applied on the optimized

solutions. Given that the application of the GA on different datasets produces different outcomes, the

Table 3. (Continued)

Term term_type p FDR

Mitochondrial envelope C 0.002 0.045

Golgi apparatus part C 0.0021 0.046

Guanyl ribonucleotide binding F 0.00021 0.049

GTP binding F 0.00021 0.049

FIG. 2. GA overview. A gene expression dataset Expr corresponding to the subset of genes of the gene module

generated by WGCNA of size m · n, where 1 £ i £ m represents conditions (Con) and 1 £ j £ n genes (Gen) and a dataset

of traits T is fed into the GA; (a) Algorithm initialization: chromosomes Chrom1, Chrom2.Chromk are produced as

binary vectors of size m, where the value ‘‘1’’ represents a ‘‘selected gene’’ and 0 represents an ‘‘ignored gene.’’

Subsequently, each chromosome is transformed into matrix form, such that Expr[�Chromk] where Chromk is a subset of

genes in the module; (b) Fitness computation: the fitness value is determined by computing the first principal com-

ponent of transposed Expr[�Chromk] = Ek, followed by estimating the Pearson correlation between Ek and T; (c)

Reproduction: Chromosomes with greater fitness value have greater chances to be involved in a recombination event.

The recombination of chromosomes x and y constitutes a split at random locus l, so that the offspring chromosome is

composed of chromx[1:l] and chromy[(l + 1):m]; (d) Mutation: Each offspring is subjected to a possible mutation event,

where each value in the chromosome can be changed from 0/1 or from 1/0, respectively. The resulting offspring

population is again subjected to a selection process following the same steps. After g generations, the last population

contains the chromosome with the optimized fitness value. GA, genetic algorithm; WGCNA, weighted gene co-

expression network analysis.

‰
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FIG. 3. GA average correlation over 1000 generations and 100 iterations. The GA was performed for 1000 gener-

ations and with 100 iterations for all 8 hormones. ABA, ethylene, and IAA were run against CDSs of module

darkslateblue, whereas GA1, GA3, iP, SA, and tZ were run against CDSs of module turquoise. The average for each

generation across iterations was recorded. X-axes represent generations, y-axes represent correlation coefficients, and

gray shaded areas represent standard deviations. ABA, abscisic acid; CDS, coding sequence; GA1 and GA3, gibber-

ellins; IAA, indole-3-acetic acid; iP, precursor isopentenyl; SA, salicylic acid; tZ, trans-zeatin.
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threshold settings were defined to be relative to the outcome; that is, given 1000 chromosomes with binary

values (genes) in the final generation of each iteration: (1) a summation vector of length chromosome with

the summed-up value for each gene for all chromosomes of the final generation over all iterations;

chromosomesum =
X

f

X

k

chromosomegfinalkf

where f represents iteration, k chromosome, and g generation,

(2) next, duplicate values of the summation vector were removed as a function of:

h chromosomesumð Þ = unique chromosomesumð Þ

(3) finally, the threshold was defined as the average of the unique values:

thresh =
rh chromosomesumð Þ
n(h chromosomesumð Þ

where n detects the length of the vector.

CDSs above the threshold were included into the final subset of the modules’ CDSs—the corresponding

genes of the modules and the subset of corresponding genes identified for the eight hormones can be viewed

in Supplementary Data S1. For ABA, the GA optimized for 213 CDSs, for ethylene 197 CDSs, and for IAA

190 CDSs in contrast to the 2142 CDSs in module darkslateblue. For GA1, 211 CDSs were identified; for

GA3 284 CDSs; for iP 183 CDSs; for SA 313 CDSs; and for tZ 303 CDSs in contrast to 4437 CDSs in

module turquoise.

3.11. Comparative genetic algorithm performance evaluation

To evaluate the performance of the CDS subsets determined by the GA in comparison to other subsets of

CDSs of the respective modules, we correlated the first principal component of the final CDS subsets,

determined by the threshold settings as described earlier (similar to step b in Fig. 2), to their respective

hormones. For ABA, an absolute correlation coefficient of 0.98 was computed: for ethylene 0.98, for IAA

0.98, for GA1 0.96, for GA3 0.99, for iP 0.94, for SA 0.99, and, finally, for tZ 0.99 (Fig. 4). Subsequently,

empirical p-value analysis was employed, where for 100,000 random subsets of CDSs from modules

darkslateblue and turquoise the correlation coefficient of their first principal component to their respective

hormones was estimated. The number of CDSs for the random subsets corresponded to the number of CDSs

present in the final subset, as determined for each hormone (see Section 3.10). Unequivocally, the subsets

determined by the GA recorded higher correlation coefficients than any of the random subsets (Fig. 4).

Next, we pairwise correlated hormone profiles to each CDS expression profile of their respective

modules. Then, we chose the CDS profiles with the strongest correlation coefficients and correlated

their first principal component to their respective hormones. Again, the number of CDSs with the

greatest correlation corresponded to the number of CDSs present in the final subset, as determined for

Table 4. Correlation Overview

Module Mean correlation final generation Correlation to ME Strongest correlation to CDS

Module darkslateblue

ABA 0.97 0.64 0.91

Ethylene 0.98 0.79 0.9

IAA 0.98 0.77 0.94

Module turquoise

GA1 0.94 0.73 0.96

GA3 0.98 0.79 0.96

iP 0.91 0.36 0.62

SA 0.98 0.94 0.92

tZ 0.98 0.96 0.95

ABA, abscisic acid; GA, genetic algorithm; GA1 and GA3, gibberellins; IAA, indole-3-acetic acid; iP, precursor isopentenyl;

ME, module eigengenes; SA, salicylic acid; tZ, trans-zeatin.

A GENETIC ALGORITHM 11

D
ow

nl
oa

de
d 

by
 U

c 
D

av
is

 L
ib

ra
ri

es
 U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

D
av

is
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

8/
01

/1
9.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



each hormone. Also, the correlation coefficient for the subset of CDSs determined by the GA was

invariably greater than the correlation coefficient for the subsets of CDSs determined by pairwise

correlation.

WGCNA includes an approach for determining the most contributing genes within a module. The

approach is based on using the weights of the correlation coefficients (edges in a graph) for each node

within the module, where nodes with the greatest accumulative weight are considered the most contrib-

uting. The value derived from this approach is termed ‘‘intramodular connectivity’’ (Dong and Horvath,

2007). We determined the CDSs with the greatest intramodular connectivity values and correlated their first

principal component to their respective hormones. The number of CDSs based on the intramodular con-

nectivity corresponded to the number of CDSs present in the final subset for each hormone. The subsets of

CDSs determined by the GA recorded greater correlation coefficients than the subsets ascertained by

intramodular connectivity (Fig. 4).

3.12. Gene Ontology term enrichment analysis emphasized specificity of genetic algorithm

To provide a biological perspective to the GA outcomes, we performed GO term enrichment analysis for

(1) all eight sets of genes generated by the GA, (2) all eight sets of the highest correlating CDSs, (3) and

intramodular connectivity. Based on the GA (Table 5), 65 different GO terms were identified, of which 20

were associated with hormones based on module darkslateblue. Out of the 20 identified GO terms, none

intersected between hormones ABA, ethylene (Fig. 5a). For hormones based on module turquoise, 49

different GO terms were identified (Table 5), of which 18 (37.5%) intersected between hormones GA1,

GA3, iP, SA, and tZ (Fig. 5a). For the analysis of the strongest correlating CDSs, 75 significant GO terms

were detected (Supplementary Data S2). For hormones based on module darkslateblue, 24 GO terms were

identified, of which 1 (4.17%) intersected (Fig. 5b). For hormones based on module turquoise, 59 GO terms

were identified, of which 51 (86.44%) intersected (Fig. 5b). For CDSs determined by the intramodular

connectivity, 119 significant GO terms were detected (Supplementary Data S2). For hormones based on

module darkslateblue, 65 GO terms were identified, of which 61 (93.85%) intersected (Fig. 5c). For

hormones based on module turquoise, 57 GO terms were identified, of which 51 (92.98%) intersected

(Fig. 5c). The high intersect of GO terms for intramodular connectivity stems from the fact that the

identification of significant genes within a module is based on the module itself rather than from its relation

to the trait.

FIG. 4. Comparative performance evaluation. Bar-graph representation of the correlation coefficient of the first

principal component of the subsets of CDSs versus their respective hormones. The analysis was performed for the

subsets determined by the GA (black bars), by the strongest correlating CDSs (dark grey bars), and intramodular

connectivity (light gray). Empirical p-value analysis was performed for subsets of CDSs determined by GA. The

corresponding values are indicated above the black bars. X-axes represent hormones, and y-axes represent correlation

coefficients.
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Table 5. Significant Gene Ontology Terms Associated with Hormones Based on Genetic Algorithm

GO term

ABA,

p-value

Ethylene,

p-value

GA1,

p-value

GA3,

p-value

IAA,

p-value

iP,

p-value

SA,

p-value

tZ,

p-value

Protein localization 0.00057 NA NA NA NA NA 0.067 0.00034

Establishment of protein

localization

0.00046 NA NA NA NA NA 0.059 0.00026

Establishment of localization 5.00E-04 0.11 0.63 0.28 0.044 0.86 0.0069 0.018

Localization 0.00054 0.11 0.64 0.28 0.046 0.87 0.0074 0.019

Macromolecule localization 0.0011 NA NA NA NA NA 0.097 0.00075

Cellular protein localization 0.0011 NA NA NA NA NA 0.033 0.0019

Transport 0.0012 0.11 0.62 0.27 0.077 0.86 0.0064 0.017

Cellular macromolecule

localization

0.0011 NA NA NA NA NA 0.033 0.0019

Cellular localization 0.0022 NA NA 0.04 NA NA 0.055 0.0043

Protein transport 0.002 NA NA NA NA NA 0.051 0.00019

Vesicle-mediated transport 0.0033 NA NA NA NA NA 0.00019 0.018

Intracellular protein transport 0.0039 NA NA NA NA NA 0.023 0.0011

Single-organism cellular

process

0.048 0.00019 0.57 0.19 0.17 0.034 0.085 0.044

Single-organism catabolic

process

NA 0.00051 NA NA NA NA NA NA

Catabolic process NA 0.00057 NA NA 0.0084 NA NA 0.13

Generation of precursor

metabolites and energy

NA 8.00E-04 NA NA NA NA NA NA

Organic substance catabolic

process

NA 0.0021 NA NA 0.0069 NA NA 0.12

Oxoacid metabolic process 0.032 0.0033 NA 0.12 NA 0.012 0.3 0.29

Intracellular membrane-

bounded organelle

0.084 0.17 0.00074 0.065 0.13 0.71 0.27 0.35

Intracellular part 0.024 0.017 0.00082 0.0041 0.058 0.031 7.60E-05 0.00089

Intracellular 0.01 0.025 3.00E-04 0.0038 0.078 0.007 3.50E-05 0.00043

Membrane-bounded

organelle

0.084 0.17 0.00074 0.065 0.13 0.71 0.27 0.35

Cell part 0.012 0.016 0.00094 0.01 0.13 0.0084 7.80E-05 0.0016

Cell 0.012 0.016 0.00094 0.01 0.13 0.0084 7.80E-05 0.0016

Cytoplasm 0.039 0.09 0.0012 0.0024 0.13 0.00046 5.20E-09 1.60E-05

Intracellular organelle 0.11 0.2 0.0018 0.0046 0.24 0.3 0.00051 0.011

Organelle 0.11 0.2 0.0018 0.0047 0.24 0.3 0.00051 0.011

Organelle organization NA NA 0.0043 NA NA NA NA 0.02

Organelle part 0.058 0.14 0.02 0.0027 0.38 0.26 0.03 0.054

Intracellular organelle part 0.058 0.14 0.019 0.0027 0.38 0.25 0.03 0.053

Cytoplasmic part 0.12 0.39 0.01 0.00075 0.21 0.013 1.90E-08 7.60E-06

Macromolecular complex 0.068 0.079 0.073 0.002 0.058 0.041 1.30E-05 2.30E-05

Nitrogen compound meta-

bolic process

0.11 0.059 0.34 0.0017 0.056 0.0065 0.052 0.0057

Peptide metabolic process NA NA 0.092 0.0039 0.12 0.00024 3.00E-08 0.00084

Cellular nitrogen compound

metabolic process

0.15 0.08 0.31 0.0018 0.12 0.017 0.052 0.0096

Structural molecule activity NA NA 0.14 0.003 NA 0.042 9.50E-08 0.0015

Cellular macromolecule

catabolic process

NA NA NA NA 0.0013 NA NA NA

Macromolecule catabolic

process

NA NA NA NA 0.0042 NA NA NA

Organonitrogen compound

metabolic process

0.17 0.19 0.55 0.017 0.042 2.30E-05 5.50E-07 0.00023

Cellular amide metabolic

process

NA NA 0.096 0.0043 0.12 0.00026 3.70E-08 0.00094

(continued)
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3.13. Genetic algorithm identified genes specifically associated to hormones

When inspecting the genes identified by the GA (Supplementary Data S3), a number of genes found are

highly associated with hormone regulation, for example, Prupe.1G349500, coding for the ABA-responsive

GRAM domain-containing protein, functioning downstream of ABI5 (Mauri et al., 2016); Pru-

pe.2G320300, encoding a heavy metal transport/detoxification superfamily protein (IAA has been asso-

ciated with increased heavy metal levels in Brassica juncea) (Srivastava et al., 2013) in barley root tips

(Zelinova et al., 2015); Prupe.7G031400, encoding a member of the auxin carrier family protein (Forestan

and Varotto, 2012; Forestan et al., 2012); and Prupe.3G161500, encoding a gibberellin-regulated family

protein, demonstrated to be involved in plant development (Zhong et al., 2015; Qu et al., 2016; Trapalis

et al., 2017). In addition, four cytokinin-associated disease resistance proteins were detected (Pru-

pe.2G066600, Prupe.7G138300, Prupe.8G179400, and Prupe.2G055700) (Choi et al., 2010; Grosskinsky

et al., 2011; Argueso et al., 2012; Großkinsky et al., 2013).

Table 5. (Continued)

GO term

ABA,

p-value

Ethylene,

p-value

GA1,

p-value

GA3,

p-value

IAA,

p-value

iP,

p-value

SA,

p-value

tZ,

p-value

Small-molecule metabolic

process

0.062 0.03 0.2 0.25 0.23 0.00044 0.12 0.11

Peptide biosynthetic process NA NA 0.17 0.0086 0.11 7.00E-04 1.90E-08 0.00065

Amide biosynthetic process NA NA 0.17 0.0086 0.11 7.00E-04 1.90E-08 0.00065

Translation NA NA 0.17 0.0081 0.1 0.00066 1.60E-08 6.00E-04

Cellular amino acid meta-

bolic process

NA NA NA NA NA 0.001 NA NA

Organonitrogen compound

biosynthetic process

0.36 0.57 0.47 0.023 0.05 0.0048 6.20E-08 0.0014

Ribosome NA NA NA 0.017 NA 0.086 4.00E-06 0.0086

Intracellular ribonucleopro-

tein complex

NA NA 0.18 0.039 NA 0.14 2.50E-05 0.022

Ribonucleoprotein complex NA NA 0.18 0.039 NA 0.14 2.50E-05 0.022

Intracellular nonmembrane-

bounded organelle

0.42 NA 0.34 0.04 NA 0.15 4.10E-05 0.0022

Nonmembrane-bounded or-

ganelle

0.42 NA 0.34 0.04 NA 0.15 4.10E-05 0.0022

Structural constituent of ri-

bosome

NA NA NA 0.019 NA 0.092 4.90E-06 0.0096

Biosynthetic process 0.12 0.38 0.73 0.01 0.14 0.035 0.00076 0.17

Organic substance biosyn-

thetic process

0.18 0.39 0.65 0.0086 0.23 0.061 0.0011 0.16

Cellular biosynthetic process 0.23 0.36 0.71 0.011 0.2 0.082 0.0014 0.13

Cellular macromolecule bio-

synthetic process

0.32 0.47 0.49 0.0065 0.29 0.039 0.0019 0.1

Macromolecule biosynthetic

process

0.32 0.47 0.49 0.0066 0.29 0.04 0.0019 0.1

Carbohydrate derivative bio-

synthetic process

NA NA NA NA NA NA 0.0034 NA

Protein complex 0.021 0.056 0.17 0.019 0.093 0.12 0.035 0.00037

GTP binding NA 0.016 NA NA NA NA 0.0073 0.00039

Guanyl ribonucleotide bind-

ing

NA 0.016 NA NA NA NA 0.0073 0.00039

Guanyl nucleotide binding NA 0.018 NA NA NA NA 0.0084 0.00047

Intracellular transport 0.0075 NA NA 0.029 NA NA 0.04 0.0027

Establishment of localization

in cell

0.0075 NA NA 0.029 NA NA 0.04 0.0027

Organic substance transport 0.016 NA NA NA NA NA 0.091 0.0037

Significant GO terms for respective hormones are highlighted in bold.

GO, Gene Ontology.
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4. DISCUSSION

The identification of genes controlling phenotypic traits is one of the core goals in functional biology. A

useful tool to accomplish this task is correlation-based network analysis, where gene expression and trait

performance are quantified at different conditions and their co-ordinated behavior is expressed via a

correlation coefficient. WGCNA is a useful tool for establishing gene-trait relationships, generating gene

modules whose the first principal component is correlated to the trait under investigation. However, often

FIG. 5. Intersect of GO terms associated with hormones. Illustrated are three sets of venn diagrams associated with

the different methods for the identification of CDSs: (a) GO terms determined by the GA; (b) GO terms determined by

the strongest correlating genes; (c) GO terms determined by intramodular connectivity. Venn diagrams of GO terms

associated with ABA, ethylene (ETH), and IAA are illustrated on the left (module darkslateblue); venn diagrams of GO

terms associated with GA1, GA3, iP, SA, and tZ are illustrated on the right (module turquoise). GO, Gene Ontology.
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these gene modules contain thousands of different genes, rendering the gene-trait relationships insuffi-

ciently determined to indicate a genuine functional association.

Here, we developed a GA-optimizing gene module to trait relationships, gradually increasing the cor-

relation between the trait and a subset of genes comprising the module. We exemplified the GA on a

Japanese plum dataset, where gene expression and content levels of eight different hormones were mea-

sured in fruits at different developmental stages in two genetically related cultivars. A comparison between

the original correlation coefficient of MEs to hormones (Fig. 1) and the correlation coefficient of the gene

subsets within the gene module to hormones (Fig. 3) showed that the GA improved the gene to trait

relationships. Further, the comparison between genes detected via the GA and genes proposed by the

strongest correlating genes, as well as the WGCNA integrated method intramodular connectivity, revealed

that the approach presented in this study consistently outperformed the other two methods. Although

the strongest correlating genes method also achieved relatively good results, it showed high fluctuations

(Fig. 4).

In parallel, the GA succeeded in significantly reducing the number of genes associated with the re-

spective hormones (Supplementary Data S1). The GA also discriminated the GO terms associated with

the eight hormones (Tables 2, 3, 5, Fig. 5 and Supplementary Data S2). Assessment of the set of genes

associated with each hormone identified single genes with defined function in hormone regulation (Sup-

plementary Data S3).

5. CONCLUSIONS

We demonstrated that the GA developed in this study is a valuable extension to WGCNA, reducing the

number of correlated genes to a number sufficiently small for the assessment of individual genes, thus

identifying meaningful candidate genes for subsequent in vivo analyses. We exemplified our study on a

fruit hormone and gene expression dataset, but we emphasize that this approach can be used on datasets of

any origin (similar to WGCNA itself).
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