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Abstract
Background: DNA microarrays are a powerful technology that can provide a wealth of gene expression data for disease
studies, drug development, and a wide scope of other investigations. Because of the large volume and inherent variability
of DNA microarray data, many new statistical methods have been developed for evaluating the significance of the
observed differences in gene expression. However, until now little attention has been given to the characterization of
dispersion of DNA microarray data.

Results: Here we examine the expression data obtained from 682 Affymetrix GeneChips® with 22 different types and
we demonstrate that the Gaussian (normal) frequency distribution is characteristic for the variability of gene expression
values. However, typically 5 to 15% of the samples deviate from normality. Furthermore, it is shown that the frequency
distributions of the difference of expression in subsets of ordered, consecutive pairs of genes (consecutive samples) in
pair-wise comparisons of replicate experiments are also normal. We describe a consecutive sampling method, which is
employed to calculate the characteristic function approximating standard deviation and show that the standard deviation
derived from the consecutive samples is equivalent to the standard deviation obtained from individual genes. Finally, we
determine the boundaries of probability intervals and demonstrate that the coefficients defining the intervals are
independent of sample characteristics, variability of data, laboratory conditions and type of chips. These coefficients are
very closely correlated with Student's t-distribution.

Conclusion: In this study we ascertained that the non-systematic variations possess Gaussian distribution, determined
the probability intervals and demonstrated that the Kα coefficients defining these intervals are invariant; these coefficients
offer a convenient universal measure of dispersion of data. The fact that the Kα distributions are so close to t-distribution
and independent of conditions and type of arrays suggests that the quantitative data provided by Affymetrix technology
give "true" representation of physical processes, involved in measurement of RNA abundance.

Reviewers: This article was reviewed by Yoav Gilad (nominated by Doron Lancet), Sach Mukherjee (nominated by
Sandrine Dudoit) and Amir Niknejad and Shmuel Friedland (nominated by Neil Smalheiser).

Open peer review
Reviewed by Yoav Gilad (nominated by Doron Lancet),
Sach Mukherjee (nominated by Sandrine Dudoit) and
Amir Niknejad and Shmuel Friedland (nominated by Neil
Smalheiser). For the full reviews, please go to the Review-
ers' comments section.

Background
DNA microarrays provide large quantities of data for the
study of diseases and biological processes in various
organisms. However, microarray studies are subject to
potential variations including biological and technical
variability. Usually, the existence of a large dispersion
makes it very difficult to draw any meaningful conclu-
sions from the differences between the experimental and
control groups [1,2]. Alison et al. [1] give the most recent
general evaluation of the approaches and methods, sum-
marizing the items where consensus has been established
as well as outstanding questions; they underline the need
for replicates and the usefulness of drawing information
from neighboring genes ("shrinkage"), which is discussed
at length here, provide the overview of clustering meth-
ods, etc. Many methods have been developed to deal with
the problem of separation of systematic and random or
pseudorandom components of the signal. For example, in
the case of arrays using multi-probe sets, such as Affyme-
trix GeneChips®, we first have to derive a representative
value of gene expression from the signals of individual

probes ("low-level" analysis). The Affymetrix MAS 5 and
GCOS use Tukey's biweight algorithm and yield an abso-
lute expression value for each probe set (Affymetrix, 2005,
GeneChip Expression Analysis Algorithm Tutorial, Part
Number 700285, Rev. 1). The method of low-level analy-
sis, developed by Li and Wong (dChip; [3,4]) is designed
to assess the observed differences in expressions of genes
on the arrays under comparison. It is based on fitting data
to a simplified model, assuming that the noise variable is
independent of the signal. A different model, called
Robust Multiarray Analysis (RMA), was proposed by
Speed, Bolstad, Irizarry and co-workers [5-7] (see also Bol-
stad, B.M., 2004, PhD Thesis, University of California,
Berkeley). It uses a log-transform of the data implicitly
assuming that the error is proportional to the signal inten-
sity. In reality, the error variable has both, constant and
proportional components. Once the representative value
of the gene expression is known, standard statistical meth-
ods of comparison can be used for "high level" analysis of
the observed differences. Nonparametric methods, such
as the Mann-Whitney U-test (Wilcoxon test) or analysis of
variance on ranks, are generally preferable, although the
parametric t-test and ANOVA are also frequently used. It
should be pointed out that the statistical methods can
only separate the systematic variations from the random
or pseudo-random component. Random errors are recog-
nizable because they conform to some known frequency
distribution, usually Gaussian distribution. However,
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occasionally, one or several samples exhibit spurious dif-
ferences from the rest of the data, due to changes in the
biological state of the examined cells, quality of RNA etc.
Such undesirable effects are often significant and can be
detected only by detailed comparisons of the individual
replicate samples.

So far, very little attention has been given to the general
properties of the dispersion of gene expression levels.
With respect to applicability of various statistical methods
it is useful to know how the standard deviation behaves
across the expression range and whether this behavior is
consistent from one assay to another and among the dif-
ferent types of arrays. Verification of normality of the fre-
quency distribution of random fluctuations is particularly
relevant. All parametric methods are based on concord-
ance of the observed frequency distribution with the nor-
mal (Gaussian) distribution. Most physical and chemical
systems, where random variations result mainly from col-
lective interactions of large ensembles of particles, exhibit
frequency distributions close to the Gaussian. The under-
lying mechanisms of microarray data variability are cer-
tainly of the same nature as the collective phenomena in
physical systems but the ensemble of the processes
involved is so complex that one would expect some com-
pound distribution, far from the simple form expressed by
the Gaussian prototype.

The object of the present study is to examine the frequency
distributions, general properties of the standard devia-
tions and coefficients of the probability intervals. It was
found that the general characteristics of dispersion are
useful for quality control, reduction of a system dimen-
sion and other purposes. Firstly an overview of the fre-
quency distributions is given for both replicate arrays (five
or more replicates) and consecutive sampling of the
expression difference in the ordered pairs of genes in two-
array comparisons. Subsequently, we describe the consec-
utive sampling analysis and evaluation of the linear char-
acteristic function, approximating the standard deviation
of the data variability across the arrays. The standard devi-
ation function is then employed to define the probability
intervals encompassing specific percentages of the
observed values. The boundaries of these intervals are
defined by probability coefficients Kα. It was found that
the values of Kα coefficients obtained using various arrays
are, at least in the first approximation, invariant. Finally,
we compare the probability of coefficients Kα with the cor-
responding values of inverse t-distribution.

Results
In the present investigation we analyzed 682 Affymetrix
microarrays of 22 different types. Our main objective was
to study the microarray data derived from particular bio-
logical investigations, generated in many different micro-

array core laboratories, rather than the sets of arrays
produced in the context of technology development or
testing methods of analysis. Only a few "testing" sets were
included. We evaluated the CEL files using MAS 4
(Affymetrix, 2002, Statistical Algorithm Description Doc-
ument. Part Number 701137, Rev. 3.) and employed the
"Average Difference" as expression signal value. Because
MAS 5 and GCOS distort the frequency distributions in
the near-zero region by ignoring the negative values, MAS
5 and GCOS outputs are not suitable. Prior to the analysis,
we verified the linearity and quality of the data, in partic-
ular, the absence of clusters with significantly different
expressions. All data on each array were normalized to
100% of the array mean; all Affymetrix control genes were
excluded.

Frequency distributions
In the case of experiments with five or more replicates, we
tested the distributions of the expressions of individual
genes. In addition, in all pair-wise comparisons we per-
formed the Kolmogorov-Smirnov normality test on con-
secutive samples (Table 1). Based on our several
thousands of tests, it was found that the Gaussian distri-
bution was characteristic of the expression data obtained
using the Affymetrix GeneChips®. Typically, for good-
quality data, between 85 and 95 percent of samples
passed the test. Moreover, a limited number of tests using
the data obtained from fiberoptic bead-based oligonucle-
otide microarrays by Illumina led to the same conclusion
[8].

For illustration, Table 2 shows the results of the Kol-
mogorov-Smirnov test for six studies using Affymetrix
GeneChips® with five to 11 replicates and two studies
using Illumina arrays with four replicates each. The mean
percentage of probe sets across the arrays failing the Kol-
mogorov-Smirnov test was 6.9 using the algorithm of
Sokal and Rohlf [9] (intrinsic hypothesis, P = 0.05). Usu-
ally, but not always, it was found that larger percentages
of failures occur in the near-zero region. We did not exam-
ine systematically reasons for the failures, but it was often
noted that there were outliers and, occasionally, a change
of the slope or a discontinuity, noticeable in the quantile-
quantile plots. Generally, we performed our analysis in
the positive range of values above a small, arbitrary
threshold. However, in the several tests, the percentage of
failures above and below the threshold was practically
identical. Figure 1 illustrates the similarity of the normal
distribution and distribution of the expressions measured
by typical probe sets in the human cell line IMR90 (11
replicates) in the high range (from 1000 to maximum of
6681, panel A), near-zero range (from -0.4 to 0.4, panel B)
and negative range (from a minimum of -923 to -20,
panel C; data Ref. [10]). A "typical" probe set is defined as
a probe set with the Kolmogorov-Smirnov distance D at or
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Table 2: Percentage of samples failing the Kolmogorov-Smirnov normality test

Array Materials No. of arrays No. of probe sets Threshold % failure 
(total)

% failure 
(above)

% failure 
(below)

Affy. HuGeneFL human cell line SKBR [a] 5 7070 2.7 7.2 6.9 7.8
Affy. HuGeneFL human cell line IMR90 [a] 11 7070 4.1 6.3 6.5 5.9
Affy. U74Av2 murine lung tissue [b] 5 12422 10.0 6.1 6.6 5.5
Affy. U74Av2 murine lung tissue [c] 5 12422 13.6 7.6 8.3 6.4
Affy. U74Av2 murine lung tissue [d] 11 12422 14.2 10.6 10.6 10.7
Affy. Focus human blood cell line [e] 9 8746 5.0 6.14 6.14 6.14
Illumina 1 human cell line GM10469 [f] 4 633 2.1 4.6 3.9 6.2
Illumina 2 human cell line GM10469 [f] 4 633 3.6 6.5 6.6 6.2
Average --- --- --- --- 6.9 6.9 6.9

Percentage of samples failing the Kolmogorov-Smirnov normality test at the level P = 0.05. All arrays are normalized to 100% of the mean value. 
The columns %failure (above) and %failure (below) give percentage of failures above and below the specified threshold.
[a] data Ref. [10].
[b] C57BL/6 (B6) WT mice, data Ref. [15].
[c] C57BL/6-Cftr-/- KO inbred mice, data Ref. [15].
[d] data M. Cosio.
[e] data O. Modlich and S. Raschke.
[f] lymphoblast cell line GM10469 [8].

Table 1: Illustration of the consecutive sampling procedure

Rank Probe set Sample Y1 Sample Y2 Y2-Y1 (Y2+Y1)/2 Sample Mean SD (Y2-Y1) SD(Y1)+ SD(Y2)

... ... ... ... ...
251 J03040_at 628 614 -14 621 614.4 71.1 71.8
252 M26880_at 657 583 -74 620
253 HG384-HT384_at 577 662 86 619
254 X04654_s_at 633 604 -29 619
255 J04046_s_at 554 680 126 617
256 X69908_rna1_at 593 640 47 617
257 D85758_at 672 555 -117 614
258 L12168_at 633 592 -41 612
259 HG1614-HT1614_at 590 633 43 611
260 X71428_at 571 649 77 610
261 S75463_at 602 615 13 608
262 X69910_at 579 630 50 604

263 X57346_at 597 610 13 603 590.1 136.2 137.0
264 U01691_s_at 576 630 54 603
265 X17620_at 605 594 -11 600
266 U10323_at 562 617 56 590
267 AJ001421_at 413 766 354 589
268 X62654_rna1_at 576 602 26 589
269 D64142_at 666 510 -156 588
270 D21063_at 562 613 51 588
271 X16560_at 588 580 -8 584
272 D26600_at 580 586 6 583
273 M19267_s_at 599 566 -33 583
274 J02621_s_at 688 475 -213 582

... ... ... ... ... ...

Rank shows the rank from the highest mean expression. The columns "Sample Y1 and Y2" give the expression values, Y2 - Y1 is the expressions 
difference and (Y2+Y1)/2 the mean expression of the probe sets Y1 and Y2. Sample Mean is the mean expression of the sample, "D(Y2-Y1)" is the 
standard deviation obtained from the difference of expressions and SD(Y1)+SD(Y2) is the sum of the standard deviations calculated from the values 
Y1 and Y2, respectively. The first 250 probe pairs are excluded to keep variation of the mean expression within the sample small.
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close to the mean D in a given range. The figures show
quantile-quantile plots (Q-Q plots), comparing the
observed expression values to the corresponding values of
the inverse normal cumulative distribution. The last panel
D shows one sample that failed the test.

Furthermore, we observed that the probe sets with the
mean expressions within a "reasonably small" range had,
on average, a similar variance. Figure 2A shows pooled
data of the 62 probe sets in the expression range from -0.1
to 0.1 (cell line IMR90, 11 replicates, Ref. [10]) in Q-Q
plot in comparison to the inverse normal cumulative dis-
tribution with good agreement except for about six out-
liers. The picture changes when we scan probe sets with a
wide range of mean expressions. Figure 2B shows the Q-Q
plot of 185 probes sets in the range of means from 500 to
1000; the lower part of the graph deviates substantially
from the straight line. When we plotted the relative
expression (i.e. expressions of the individual probe sets
divided by the mean of 11 arrays; Figure 2C), we got all
the points, except for about ten outliers, back on the 45°
line. This implies that the standard deviation is linearly
proportional to the mean expression level.

Based on the evidence of Figure 2, we hypothesize that
approximately the same standard deviation can be
obtained by scanning the data vertically, i.e. looking at
expressions of the neighboring probe sets, or horizontally,
i.e. looking at the series of arrays for each probe set. In
other words, the probability that we will observe a differ-
ence d between the measurements M1 and M2 of the probe
set Pr1 on the arrays A1 and A2 is, at least in the first approx-
imation, about the same as the probability that we will
observe such difference between the measurement M3 of
the probe set Pr1 on the array A1 and the measurement M4
of the probe set Pr2 on the array A2, provided that the
mean expression of both populations is the same. It fur-
ther follows that an estimate of mean standard deviation
of a group of genes with approximately same mean
expression can be obtained from comparison of two
arrays. We need to rank the probe sets according to the
mean expression and evaluate the standard deviation
from the differences in gene expressions in samples of k
consecutive genes; the range of the means within a sample
must be small. Furthermore, in this arrangement we can
also obtain the standard deviation by using the ranked
probe sets of each individual array (Ref. [10], Supplemen-
tary Material). Note that the standard deviation derived
from the difference converges to √2σ, where σ is a stand-
ard deviation of a given population. Figure 3 shows a
comparison of the frequency distribution of the difference
in expression of two consecutive samples with the corre-
sponding inverse normal cumulative distribution (cell
line IMR90).

Consecutive sampling analysis
Assume, as a working hypothesis, that we can estimate the
standard deviation of the gene expression variability of
series replicate arrays from two-array comparisons. Since
the evidence derived from the frequency distribution sug-
gests that the standard deviation is linearly proportional
to the expression level (at least in the first approxima-
tion), we assume that a representative estimate of the
standard deviation can be obtained in the form of a linear
function of the mean expression. A similar model was
proposed on a basis of theoretical considerations by
Rocke and coworkers [11-14]. The consecutive sampling
program (see Methods) takes k pairs of expression values
Y1i and Y2i ranked according to the mean (Y1i, Y2i) and cal-
culates the standard deviation from the difference Y2i-Y1i,
where the subscripts 1 and 2 denote the array number and
i signifies the probe set rank; typically we set k = 12, 25 or
50, depending on the size of the array. The standard devi-
ation function is then determined by fitting the logarith-
mically transformed values to the logarithm of the linear
function of the mean expression (see the Methods sec-
tion). For illustration, Figure 4A shows the dispersion plot
and boundaries of the 0.8 and 0.95 probability intervals
for the murine array MG U74Av2 (lung tissue, AKR mice;
Table 4), whereas Figure 4B shows standard deviations of
the consecutive samples consisting of 12 ordered pairs of
probe sets and the regression curve, representing the
standard deviation function.

To verify our working hypothesis stated above, we also
evaluated the regression function using the standard devi-
ations calculated from dispersion of expressions recorded
by replicates of the individual probe sets. Table 3 shows
the comparison for five assays with the number of repli-
cates ranging from four to 11. The values of the coeffi-
cients a1 and a2 ranged from 2.1 to 6.0 and from 0.076 to
0.161, respectively. Since the standard deviation calcu-
lated from the difference is √2 times larger than the stand-
ard deviation of a given population, we compared the
values obtained from the individual genes to the results of
the consecutive sampling divided by √2. The average dif-
ference of the coefficient a1 for the Affymetrix arrays was
5.4% and for the Illumina arrays 7.4%, whereas the differ-
ences for the coefficient a2 were 7.5% and 11.2%, respec-
tively. The total average difference for a1 and a2 was 6.2%
and 9.0%, respectively. We observed that in all cases
except one (Focus Arrays) the values obtained from the
consecutive sampling were above the results obtained
from individual genes. This is to be expected, because the
expressions in the consecutive samples belong to popula-
tions with different, albeit very similar, means. Since the
standard deviation increases with increasing average, the
differences among the means introduce an additional var-
iability. Figure 5 shows an example of the standard devia-
tion derived from 9 replicates of the Focus array. The
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points represent the standard deviations of the expres-
sions of individual probe sets and the solid line represents
the standard deviation function derived from the consec-
utive sampling.

Probability intervals and correlation of the Kα coefficients 
with t-distribution
Once we evaluate the standard deviation function, we can
determine the limits of the probability intervals, i.e. the
boundaries corresponding to a distance from the 45° axis
of symmetry equal to a constant number of standard devi-
ations. Equations defining these limits are given in the
Methods section (Eqs. (2) and (3)). The coefficient Kα is
equivalent to the standardized or "standard" deviate of
the normal distribution, representing the distance from
the mean, expressed in standard deviations. In case of the
z-distribution or t-distribution the standard deviates cor-
responding to specific probability intervals can be derived
from the cumulative distribution function. Since the the-
oretical distribution function corresponding to the proba-
bility intervals of the microarray dispersion is unknown,
we determined the coefficients Kα empirically. First we cal-
culated the standard deviation function and then used
Eqs. (2) and (3) to define the limits of the standard devi-
ate intervals ("probability intervals"; see Figure 4A, note
that the boundary lines appear in the log-log plot as
curves). To determine the Kα coefficients corresponding to
specific probabilities we counted the points lying outside
a given interval. For example, if the number of points in a
given expression range examined was, say, 10000, we
determined the Kα value corresponding to the interval
0.995 by finding the interval containing 9950 points
(99.5%), leaving the 50 points outside. More precisely,
the Kα is calculated as the average of the values corre-
sponding to the integers above and below the number
equal to the given fraction.

The Kα coefficients are standardized with respect to the
mean and standard deviation of given populations. As
such, they are a universal measure of the probability of
occurrence, function only of the shape of the distribution

function. Considering the complexity of the processes
involved in microarray experiments, we did not expect
that the coefficient would be constant even for just a vari-
ety of RNA samples of a given type of array. Nonetheless,
examination of 42 microarray studies with two to 11 rep-
licates comprising 682 arrays and 22 Affymetrix array
types revealed that values of the Kα coefficients were very
close for all tested comparisons (note that multiple chip
arrays are counted as multiple types). The coefficients
were invariant for a wide range of dispersions, invariant
with respect to different laboratory conditions, different
tissues and different species and across all the types of
arrays we tested. Table 4 shows a summary of the average
values of Kα coefficients for 900 pair-wise comparisons.
The average coefficient a1 varied from 1.8 to 54.4 and coef-
ficient a2 from 0.08 to 0.69, with total coefficients of vari-
ation 1.05 and 0.54, respectively. In spite of such a wide
range, the differences in the coefficient Kα were small: the
coefficient of variation ranged from the minimum 0.031
at the probability p = 0.9 to the maximum 0.101 at p =
0.995.

We examined the relationship between the coefficients Kα
and the inverse cumulative t-distribution. We found a very
close linear correlation between the Kα values and the t-
distribution values corresponding to the degree of free-
dom df = 6. The adjusted R2 coefficient was 0.99993, with
the intercept of 0.039 and the coefficient of proportional-
ity of 0.855. Figure 6 shows the graph of the Kα values
plotted against the t-distribution parameters in the range
of probability intervals from 0.5 to 0.995; the solid line
represents the regression line for df = 6 and the bars indi-
cate the standard deviation. We also compared directly the
Kα intervals and t-distribution. Figure 7 shows the proba-
bility values corresponding to the Kα coefficients and t-dis-
tribution probability, represented by the solid curve. In
the direct comparison we obtain better agreement for df =
12 than for df = 6.

A further examination of the results shown in Table 4
seemed to indicate that the older GeneChips® had a some-

Table 3: Comparison of the coefficients of standard deviation function derived from the consecutive sampling and individual probe 
sets

Array No. of samples Pair-wise a1 Individual genes a1 Difference % Pair-wise a2 Individual genes a2 Difference %

HuGene FL (IMR90) 11 6.0 5.9 1.8 0.082 0.076 7.3
Focus 9 2.9 2.9 1.7 0.153 0.154 -0.6
MG-U74Av2 11 5.1 4.4 12.8 0.161 0.136 15.6
Illumina 1 4 2.7 2.4 12.2 0.092 0.085 7.7
Illumina 2 4 2.2 2.1 2.6 0.096 0.082 14.7
mean difference % --- --- --- 6.2 --- --- 9.0

Columns pair-wise a1 and pair-wise a2 are the coefficients of the standard deviation characteristic function derived from the consecutive sampling. 
Columns individual genes a1 and a2 show the values derived from the individual probe sets and difference is the difference in % between the two 
methods.
Page 6 of 24
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what broader distribution. For example, the mean Kα at
0.995 for the array HuGene FL was 4.11, while these val-
ues for the later versions HG-U95A and HG-U133A were
3.48 and 3.56, respectively. To assess the correlation
between the developing technology and shape of the Kα
distribution, we need a quantitative parameter, reflecting
the technological advancement. One possibility is the fea-
ture size and number of probe pairs per set, which have
been systematically decreasing with time. Table 5 shows

the overview of the selected Kα values correlated with the
technical factor TF, defined as the sum of the feature size
and number of the probe pairs per probe set. In Figure 8
we present the Kα values at 0.95 and 0.995, plotted against
TF. The regression line showed a slight decreasing ten-
dency of the Kα values at 0.995 with the decreasing TF, but
the graph was not very convincing; the adjusted R2 was
only 0.31. No trend was discernible at the probability of
0.95.

Comparison of the observed frequency distribution to the inverse normal cumulative distributionFigure 1
Comparison of the observed frequency distribution to the inverse normal cumulative distribution. Quantile-
quantile plots show on y-axis the observed expression and on x-axis value of the corresponding inverse normal cumulative dis-
tribution. Microarray data are derived from HuGeneFL, using IMR90 cell line with 11 samples. Panels show the probe sets with 
the Kolmogorov-Smirnov maximum distance D equal or close to the mean value in the specified average expression rage. 
Inserts provide the Affymetrix probe set identification, average expression for a given gene and standard deviation. A: probe 
set HG2279-HT2375_at, rank 43, expression range from 1000 to 6681 (high range, maximum), average D in the range is 0.176, 
sample D is 0.176; B: probe set Z23091_rna1_at, rank 5484, expression range from -0.4 to 0.4 (near-zero range), average D in 
the rang is 0.181, sample D is 0.182; C: probe set X95876_at, rank 7003, expression range from -20 to -923 (negative range, 
minimum), average D in the range is 0.183, sample D is 0.182; D: example of the probe set that failed the test – probe set 
M14199_s_at, rank 25, sample D is 0.204 (data Novak et al., IMR90 [10]).
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We found the probability intervals useful for estimating
the significance of the observed differences, in particular
in assays with small numbers of replicates (four or less).
The Kα coefficients representing the number of standard
deviates that separates the measured values from the refer-
ence mean values provide an objective measure of dissim-
ilarity between the populations under consideration. For
the single normal population the interpretation is
straightforward. However, in case of the microarray data
we deal with the multitude of populations and the theo-
retical Kα function is unknown; our correlation results
though indicate that a universal function, encompassing
all GeneChip® types, exists. We could use the Kα values
obtained from correlations instead of the theoretical val-
ues; however, the experience has shown that the results
are not reliable. First, considering the large number of val-
ues on the arrays even small differences in the Kα function
translate into substantial differences in number of candi-
dates. Second, quite frequently the unplanned differences
between the samples cause deviations from the expected
behavior and render comparison with the general func-
tion unsuitable. Therefore, in practice, we use the Kα coef-
ficients only for ranking.

To determine the best candidate genes differentially
expressed, we search for the genes with the largest Kα in all
or most of the comparisons. We named this method "con-
secutive sampling and coincidence test." Briefly, we calcu-
late the Kα coefficients in all possible N pair-wise
comparisons and select the probe sets with expressions
beyond a given probability interval in at least M compar-
isons; the upper limit of probability of observing f false
positives can be calculated theoretically, assuming ran-
dom selection. Detailed discussion is beyond the scope of
this study (a particular example of application to the anal-
ysis of five-replicate assay of murine lung tissue can be
found in Ref. [15]). The main advantages of this approach
are that: 1) it is a nonparametric method; 2) applicable to
assays with small number of replicates (as small as two);
3) it examines all pair-wise comparisons and makes easy
to identify and automatically flag problematic arrays; 4)
the probability of false positives can be easily calculated
from the binomial distributions or estimated by straight-
forward simulations [8]. Here, as a brief illustration of the
consistency of this approach, Table 6a shows the analysis
of five replicates of murine GeneChips MG-U74Av2,
labeled as mg1 to mg5 (data Ref. [15]). The purpose is to
examine consistency of the results of analysis of differen-
tial expression using the t-test, coincidence method and
RMA. For the test, we defined five subsets: [mg1, 2, 3, 4],
[mg1, 2, 3, 5], [mg1, 2, 4, 5], etc. and selected the candi-
date genes. The threshold of selection for the t-test was P
= 0.01, for the coincidence 12 out of possible 16 cases,
and for the RMA minimum fold difference 2. We selected
the genes satisfying the given criteria for each subset and

Comparison of the observed frequency distribution to the inverse normal cumulative distribution, pooled dataFigure 2
Comparison of the observed frequency distribution 
to the inverse normal cumulative distribution, 
pooled data. Quantile-quantile plots show on y-axis the 
observed expression and on x-axis value of the correspond-
ing inverse normal cumulative distribution. Microarray data 
are derived from HuGeneFL, using the cell line IMR90 with 
11 samples, pooled data. A: expression range from -0.1 to 
0.1, 62 probe sets; B: expression range from 500 to 1000, 
185 probe sets; C: expression range from 500 to 1000, 185 
probe sets, relative expression values (sample expression 
divided by the mean of 11 samples; data Novak et al. [10]).
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Comparison of the observed frequency distribution of consecutive samples to the inverse normal cumulative distributionFigure 3
Comparison of the observed frequency distribution of consecutive samples to the inverse normal cumulative 
distribution. Quantile-quantile plots show on y-axis the difference of expression of two microarrays and on x-axis value of 
the corresponding inverse normal cumulative distribution. Microarray data are derived from HuGeneFL, using cell line IMR90 
[10]. Probe sets of the microarrays 1 and 3 are ordered according to the mean expression and statistical samples of 12 probe 
sets are taken in the range of ranks from 250 to 4800. Panels show the samples with the Kolmogorov-Smirnov maximum dis-
tance equal or close to the mean value in the specified average expression rage. Inserts provide the average mean expression 
(range avg.), mean of the differences (s. avg.) and standard deviation (s. SD). A: expression range from 400 to 620, average D in 
the range is 0.142, sample D is 0.142; B: expression range from 10 to 20, average D in the range is 0.204, sample D is 0.204.
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a values in given probability intervals

0.800 0.900 0.950 0.990 0.995

1.275 1.711 2.145 3.226 3.741
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0.04 0.04 0.05 0.03 0.01

1.30 1.83 2.32 2.98 3.26
1.27 1.68 2.07 3.05 3.55
1.26 1.67 2.07 3.07 3.56
1.25 1.66 2.07 3.06 3.55
1.24 1.66 2.04 3.02 3.50
1.26 1.65 2.05 3.05 3.62
1.25 1.66 2.04 2.92 3.31
1.20 1.64 2.10 3.22 3.71
1.26 1.69 2.09 2.98 3.29

1.26 1.68 2.09 3.04 3.48
0.03 0.06 0.09 0.08 0.16
0.02 0.04 0.04 0.03 0.05

1.30 1.80 2.28 3.18 3.68
1.24 1.65 2.02 3.08 3.54
1.30 1.77 2.25 3.39 3.98
1.23 1.62 2.00 3.06 3.61
1.28 1.77 2.33 3.80 4.42
1.23 1.62 2.05 2.98 3.48
1.27 1.78 2.29 3.53 4.08
1.25 1.64 2.02 2.88 3.31

1.26 1.71 2.16 3.24 3.76
0.03 0.08 0.14 0.31 0.37
0.02 0.05 0.07 0.10 0.10

1.28 1.72 2.14 3.14 3.62
1.31 1.75 2.17 3.18 3.63
1.32 1.77 2.21 3.26 3.75
1.26 1.67 2.08 3.05 3.54
1.27 1.68 2.08 3.04 3.48
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Table 4: Summary of values of the coefficients of standard deviation function and Kα coefficients

GeneChip/average/SD/CV No. of probe sets Cons. samp. size No. of arrays No. of comp. Coefficient. of st. dev. function Average Kalph

a1 a2 0.500 0.600 0.700

Total average [sum] [682] [900] 9.66 0.266 0.642 0.808 1.009
Total SD 9.99 0.146 0.033 0.039 0.043
Total CV 1.03 0.550 0.052 0.049 0.043

HuGeneFL [a1] 7070 12 11 54 8.61 0.115 0.64 0.81 1.01
HuGeneFL [b] 7070 12 13 78 8.09 0.418 0.61 0.77 0.97
HuGeneFL [c] 7070 25 5 10 34.58 0.435 0.61 0.76 0.94
HuGeneFL [c] 7070 25 5 10 28.93 0.393 0.59 0.73 0.92

HuGeneFL avg [sum] [34] [152] 20.05 0.34 0.61 0.77 0.96
HuGeneFL SD 13.71 0.15 0.02 0.03 0.04
HuGeneFL CV 0.68 0.44 0.04 0.04 0.04

HG-U95Av2 [d] 12559 12 5 10 6.30 0.688 0.61 0.78 1.00
HG-U95Av2 [e1] 12559 25 15 15 10.49 0.199 0.65 0.82 1.01
HG-U95Av2 [e2] 12559 25 15 15 10.59 0.200 0.64 0.81 1.01
HG-U95Av2 [e3] 12559 25 15 15 10.41 0.189 0.63 0.80 1.00
HG-U95Av2 [e4] 12559 25 12 12 10.91 0.185 0.63 0.79 0.99
HG-U95Av2 [e5] 12559 25 4 2 6.50 0.394 0.65 0.82 1.01
HG-U95Av2 [f] 12559 25 4 2 5.64 0.155 0.64 0.81 1.00
HG-U95Av2 [g1] 12559 25 2 1 4.79 0.479 0.61 0.76 0.95
HG-U95Av2 [g1] 12559 25 5 10 3.31 0.500 0.64 0.80 1.00

HG-U95Av2 avg [sum] [77] [82] 7.66 0.33 0.63 0.80 1.00
HG-U95Av2 SD 2.94 0.19 0.02 0.02 0.02
HG-U95Av2 CV 0.38 0.57 0.02 0.02 0.02

HG-U95B [d] 12563 12 5 10 16.26 0.636 0.63 0.80 1.01
HG-U95B [e5] 12563 25 2 1 17.95 0.167 0.64 0.80 0.99
HG-U95C [d] 12587 12 5 10 20.57 0.603 0.64 0.81 1.02
HG-U95C [e5] 12587 25 2 1 16.42 0.178 0.63 0.79 0.99
HG-U95D [d] 12587 12 5 10 39.79 0.501 0.62 0.78 0.99
HG-U95D [e5] 12587 25 2 1 54.45 0.240 0.63 0.79 0.99
HG-U95E [d] 12582 12 5 10 31.84 0.534 0.60 0.76 0.97
HG-U95E [e5] 12582 25 2 1 45.64 0.215 0.63 0.79 1.00

HG-U95B to E avg [sum] [28] [44] 30.37 0.38 0.63 0.79 0.99
HG-U95B to E SD 14.87 0.20 0.01 0.01 0.02
HG-U95B to E CV 0.49 0.53 0.02 0.02 0.02

HG-U133A 2.0 [e6] 22225 25 15 15 4.55 0.091 0.65 0.82 1.02
HG-U133A 2.0 [e7] 22225 25 15 15 4.50 0.106 0.66 0.84 1.04
HG-U133A 2.0 [e8] 22225 25 12 12 4.10 0.108 0.67 0.84 1.05
HG-U133A 2.0 [h1] 22225 25 8 4 3.91 0.288 0.64 0.80 1.00
HG-U133A 2.0 [i1] 22225 12 4 6 6.25 0.210 0.65 0.82 1.01
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)1.25 1.68 2.10 3.13 3.62
1.25 1.66 2.08 3.10 3.64
1.27 1.71 2.11 2.84 3.16
1.19 1.65 2.15 3.37 3.79
1.27 1.68 2.08 3.06 3.55
1.27 1.67 2.06 2.93 3.33

1.27 1.69 2.11 3.10 3.56
0.03 0.04 0.05 0.15 0.18
0.03 0.02 0.02 0.05 0.05

1.33 1.76 2.17 3.11 3.55
1.28 1.69 2.07 2.95 3.34

1.30 1.72 2.12 3.03 3.44

1.35 1.76 2.15 3.06 3.47
1.33 1.76 2.18 3.08 3.56
1.36 1.81 2.22 3.15 3.55
1.35 1.79 2.19 3.17 3.64
1.33 1.77 2.19 3.12 3.49
1.38 1.81 2.19 3.11 3.53
1.32 1.74 2.14 3.06 3.43

1.35 1.78 2.18 3.11 3.52
0.02 0.03 0.03 0.04 0.07
0.01 0.01 0.01 0.01 0.02

1.22 1.70 2.20 3.65 4.48
1.20 1.68 2.19 3.78 4.66
1.23 1.70 2.21 3.70 4.52
1.19 1.71 2.30 4.03 4.84
1.28 1.73 2.22 3.62 4.24

1.26 1.71 2.21 3.61 4.32

1.23 1.70 2.22 3.73 4.51

0.04 0.02 0.04 0.16 0.22

0.03 0.01 0.02 0.04 0.05

1.25 1.73 2.26 3.95 4.56

1.23 1.70 2.20 3.56 4.30
1.23 1.71 2.24 3.68 4.48
1.24 1.72 2.21 3.54 4.30
1.33 1.76 2.19 3.23 3.76
1.30 1.73 2.13 3.09 3.53
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7 HG-U133A 2.0 [j] 22225 25 5 10 6.54 0.390 0.62 0.79 0.98

HG-U133A 2.0 [j] 22225 25 5 10 5.54 0.393 0.62 0.79 0.98
HG-U133A 2.0 [k1] 22225 25 6 15 3.68 0.672 0.63 0.80 1.00
HG-U133A 2.0 [k1] 22225 25 3 3 4.95 0.435 0.59 0.74 0.93
HG-U133A 2.0 [l1] 22225 25 6 3 6.45 0.151 0.64 0.81 1.01
HG-U133A 2.0 [l2] 22225 25 12 6 6.78 0.148 0.65 0.82 1.02

HG-U133A 2.0 avg [sum] [91] [99] 5.21 0.27 0.64 0.80 1.00
HG-U133A 2.0 SD 1.15 0.18 0.02 0.03 0.03
HG-U133A 2.0 CV 0.22 0.67 0.03 0.03 0.03

HG-U133 Plus 2 [i2] 54000 50 8 10 3.94 0.188 0.68 0.85 1.06
HG-U133 Plus 2 [l3] 54000 50 20 27 4.03 0.086 0.65 0.82 1.02

HG-U133 Plus 2 avg 
[sum]

[28] [37] 3.99 0.14 0.67 0.83 1.04

HG-Focus [k2] 8756 12 9 36 4.13 0.216 0.70 0.87 1.08
HG-Focus [k2] 8756 12 4 6 4.13 0.181 0.68 0.86 1.07
HG-Focus [k2] 8756 12 4 6 3.90 0.198 0.70 0.87 1.08
HG-Focus [k2] 8756 12 4 6 3.69 0.176 0.68 0.86 1.07
HG-Focus [k2] 8756 12 5 10 3.46 0.183 0.67 0.85 1.05
HG-Focus [k2] 8756 12 4 6 4.01 0.205 0.71 0.89 1.10
HG-Focus [k2] 8756 12 4 6 3.98 0.174 0.68 0.85 1.06

HG-Focus avg [sum] [34] [76] 3.90 0.19 0.69 0.86 1.07
HG-Focus SD 0.24 0.02 0.01 0.02 0.02
HG-Focus CV 0.06 0.08 0.02 0.02 0.01

MG-Mu11kSubA, SubB [a] 13069 12 10 20 9.98 0.121 0.59 0.75 0.95
MG-Mu11kSubA, SubB [a] 13069 12 10 20 8.03 0.170 0.59 0.74 0.94
MG-Mu11kSubA, SubB [a] 13069 12 10 20 8.21 0.145 0.60 0.76 0.96
MG-Mu11kSubA, SubB [a] 13069 12 10 20 5.32 0.139 0.56 0.71 0.91
MG-Mu11kSubA, SubB 
[m1]

13069 12 8 4 13.86 0.321 0.64 0.81 1.01

MG Mu11kSubA, SubB [n1] 13069 12 20 10 11.84 0.420 0.66 0.82 1.01

MG-Mu11kSubA, SubB 
avg [sum]

[68] [94] 9.54 0.219 0.61 0.77 0.96

MG-Mu11kSubA, SubB 
SD

3.03 0.122 0.04 0.04 0.04

MG-Mu11kSubA, SubB 
CV

0.32 0.557 0.06 0.05 0.04

Mu19kSubA, B, C [m2] 12420 12 12 6 15.41 0.314 0.63 0.79 0.99

MG-U74Av2 [o] 12588 12 6 6 8.72 0.180 0.59 0.75 0.95
MG-U74Av2 [o] 12588 12 5 4 6.97 0.230 0.58 0.74 0.94
MG-U74Av2 [p] 12588 12 7 21 9.50 0.125 0.59 0.75 0.95
MG-U74Av2 [q] 12588 12 5 4 4.97 0.229 0.68 0.85 1.06
MG-U74Av2 [l4] 12588 12 9 9 7.50 0.111 0.67 0.83 1.03

Table 4: Summary of values of the coefficients of standard deviation function and Kα coefficients (Continued)
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)1.29 1.73 2.17 3.31 3.89
1.27 1.71 2.17 3.48 4.04
1.27 1.69 2.10 3.15 3.80
1.27 1.72 2.16 3.36 3.95
1.27 1.70 2.12 3.15 3.67

1.27 1.72 2.17 3.36 3.97
0.03 0.02 0.04 0.20 0.31
0.02 0.01 0.02 0.06 0.08

1.27 1.68 2.06 2.94 3.36
1.30 1.71 2.10 2.98 3.35
1.27 1.67 2.05 2.93 3.30

1.28 1.69 2.07 2.95 3.34
0.02 0.02 0.03 0.03 0.03
0.02 0.01 0.01 0.01 0.01

1.28 1.73 2.21 3.40 3.95
1.33 1.76 2.17 3.20 3.77
1.29 1.72 2.11 3.10 3.60

1.30 1.74 2.16 3.24 3.78
0.02 0.02 0.05 0.15 0.17
0.02 0.01 0.02 0.05 0.05

1.22 1.65 2.08 3.12 3.38

1.31 1.73 2.17 3.21 3.67

1.32 1.78 2.24 3.45 4.03
1.34 1.81 2.29 3.47 4.04

1.30 1.74 2.19 3.31 3.78

1.31 1.71 2.09 2.95 3.31
1.31 1.71 2.08 2.91 3.26
1.27 1.69 2.10 3.06 3.45
1.31 1.72 2.12 3.17 3.70
1.28 1.68 2.08 3.09 3.60

1.30 1.70 2.09 3.03 3.46
0.02 0.02 0.02 0.11 0.19
0.02 0.01 0.01 0.03 0.05

1.40 1.79 2.15 2.89 3.18
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7 MG-U74Av2 [r] 12588 12 10 20 4.69 0.269 0.65 0.82 1.02

MG-U74Av2 [r] 12588 12 3 3 3.30 0.238 0.64 0.80 1.00
MG-U74Av2 [e5] 12588 12 2 1 3.83 0.184 0.64 0.81 1.00
MG-U74Av2 [g2] 12588 12 2 1 13.50 0.451 0.64 0.81 1.01
MG U74Av2 [n2] 12400 12 26 13 6.56 0.113 0.64 0.80 1.00

MG-U74Av2 avg [sum] [75] [82] 6.96 0.213 0.63 0.80 1.00
MG-U74Av2 SD 3.07 0.101 0.03 0.04 0.04
MG-U74Av2 CV 0.44 0.472 0.06 0.05 0.04

MG-U430A [l5] 22636 25 10 5 7.68 0.132 0.65 0.81 1.01
MG-U430A [l6] 22636 25 5 10 10.08 0.265 0.67 0.84 1.04
MG-U430A [l6] 22636 25 5 10 9.44 0.160 0.65 0.81 1.01

MG-U430A [20] [25] 9.07 0.186 0.65 0.82 1.02
MG-U430A 1.24 0.070 0.01 0.02 0.02
MG-U430A 0.14 0.377 0.02 0.02 0.02

RG-U34A [h2] 8740 12 35 34 1.82 0.316 0.64 0.81 1.01
RG-U34A [l7] 8740 12 6 3 3.25 0.226 0.68 0.85 1.06
RG-U34A, [l8] 8740 12 4 2 6.01 0.146 0.65 0.83 1.03

RG-U34A avg [sum] [45] [39] 3.70 0.229 0.66 0.83 1.03
RG-U34A SD 2.13 0.085 0.02 0.02 0.02
RG-U34A CV 0.58 0.371 0.03 0.03 0.02

RT-U34 Neurobiology 
[l7]

982 12 40 20 1.77 0.194 0.60 0.75 0.96

Drosophila [s] 13976 12 6 6 2.20 0.081 0.66 0.83 1.04

E. coli [t] 7290 12 38 39 3.09 0.337 0.65 0.83 1.04
E. coli [u] 7290 12 15 30 1.88 0.302 0.65 0.83 1.04

E. Coli avg [sum] [53] [69] 2.23 0.228 0.64 0.81 1.02

ATH1 [v1] 22700 25 14 17 9.22 0.307 0.68 0.85 1.05
ATH1 [v1] 22700 25 34 36 11.18 0.269 0.68 0.85 1.05
ATH1 [w] 22700 25 8 4 6.26 0.279 0.65 0.81 1.01
ATH1 [x] 22700 25 4 2 3.09 0.232 0.68 0.85 1.05
ATH1 [y] 22700 25 4 2 3.07 0.247 0.66 0.82 1.02

ATH1 avg [sum] [64] [61] 6.57 0.267 0.67 0.84 1.04
ATH1 SD 3.63 0.029 0.01 0.02 0.02
ATH1 CV 0.55 0.108 0.02 0.02 0.02

Arabidopsis [v2] 8200 12 7 8 7.69 0.403 0.75 0.94 1.14

Table 4: Summary of values of the coefficients of standard deviation function and Kα coefficients (Continued)
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rays is a number of arrays tested, No. of comp. is the 
cient determining probability interval; "h." stands for 
(CV) of each GeneChip type are printed in bold italics.

 different concentrations.

e; [49] and unpublished data.
No. of probe sets is approximate number of the probe sets on array, Cons. samp. size is number of the probe pairs in a consecutive sample, No. of ar
number of pair-wise comparisons among the replicates, coefficients a1 and a2 are the coefficients of standard deviation function and Kalpha is the coeffi
"human," "m." for "murine." Average values, sum of arrays and comparisons (in square brackets), standard deviations (SD) and coefficients of variation 
Data sources:
a1 – J. P. Novak et al., HuGeneFl, IMR90 human cell line [10].
a2 – J. P. Novak et al., HuGeneFl, mouse tissues, adult male C57BL/6 [10].
b – A.-M. Mes-Masson, P. Tonin and coworkers, HuGeneFL, normal ovarian surface epithelial (NOSE) primary cell cultures, private communication.
c – P. Permana, HuGeneFL, human skeletal muscle tissue [35].
d – P. Tonin and A.-M. Mes-Masson and coworkers, HG-U95A to E, epithelial ovarian cancer (EOC) cell line [36].
e1 – Affymetrix, HG-U95A, latin square, experiments 1 to 5.
e2 – Affymetrix, HG-U95A, latin square, experiments 6 to 10.
e3 – Affymetrix, HG-U95A, latin square experiments 11 to 15.
e4 – Affymetrix, HG-U95A, latin square, experiments 16 to 19.
e5 – Affymetrix, HG-U95A to E, Demo Data.
e6 – Affymetrix, HG-U133A, latin square, experiments 1 to 5.
e7 – Affymetrix, HG-U133A, latin square, experiments 6 to 10.
e8 – Affymetrix, HG-U133A, latin square, experiments 11 to 14.
f – M. S. Rolph, HG-U95Av2, primary human bronchial epithelial cells.
g1 – Z. Gatalica, HG-U95Av2, breast tumor tissues and normal breast tissue samples [37].
g2 – Z. Gatalica, MG-U74Av2, mouse kidney tissue.
h1 – M. Boerma, HG-U133A 2.0, primary human umbilical vein endothelial cells (HUVECs) and the immortalized HUVEC cell line EA.hy926 [38].
h2 – M. Boerma, RG-U34A, cultures enriched for neonatal rat cardiac myocytes or fibroblasts [39].
i1 – M. Hajduch, HG-U133A 2.0.
i2 – M. Hajduch, HG-U133 plus 2.
j – S. Y. Kim and D. J. Volsky, HG-U133A 2.0, human fetal astrocytes, normal and pseudotyped HIV-1 infected [40].
k1 – O. Modlich, HG-U133A 2.0, human superficial and invasive bladder tumors [41].
k2 – O. Modlich and Raschke, Focus arrays, human lymphoma cell line Kaspas-422, DSMZ no.: ACC 32 (follicular B cell).
l1 – C. Wang and J. Xu, HG-U133A 2.0, human lymphoblast cell line.
l2 – C. Wang and J. Xu, HG-U133A 2.0, human pancreatic islet.
l3 – C. Wang and J. Xu, HG-U133 Plus 2, Stratagene Universal Human Reference RNA, Ambion Human Brain Reference RNA and mixtures of both in
l4 – C. Wang and J. Xu, MG-U74Av2, mouse biliary epithelial cells.
l5 – C. Wang and J. Xu, MG-U430A, mouse spleen.
l6 – C. Wang and J. Xu, MG-U430A, myofibroblast cell line.
l7 – C. Wang and J. Xu, RG-U34A, rat livers.
l8 – C. Wang and J. Xu, RG-U34A, rat bone marrow stem cells.
m1 – McInnes and coworkers, MG-Mu11kSubA, SubB, retinal RNA samples from WT and Rom1 knock-out mice [36].
m2 – McInnes, Szego and coworkers, MG-Mu19kSubA, SubB, SubC, retinal RNA samples from WT and Rom1 knock-out mice [42].
n1 – Burton, McGehee and coworkers, MG-Mu11kSubA, SubB, 3T3-L1 adipocytes [43].
n2 – Burton, McGehee and coworkers, MG-U74Av2,3T3-L1 adipocyte cultures [44].
o – M. Cosio, MG-U74Av2, lung tissues, murine strains NZW and AKR.
p – R. St-Arnaud, MG-U74Av2, C2C12 cells [45].
q – J. Hidalgo, MG-U74Av2, cortex samples, C57B6 normal and IL6 KO mice [46].
r – D. Radzioch, C. Guilbault and coworkers, MG-U74Av2, C57BL/6 (B6) WT and C57BL/6-Cftr-/- (KO) inbred mice [15].
s – S. E. Choe, Drosophila, Drosophila Gene Collection release 1.0 cDNA clones [19].
t – F. Blattner, E. coli antisense genome, E. coli K-12 strain MG1655 and an isogenic fnr::Spr Smr strain [47].
u – J. Slonczewski and S. BonDurant, E. coli antisense genome, E. coli K-12 strain W3110 [48].
v1 – E. Blumwald and J. Sottosanto, ATH1, A. thaliana ecotype Wassilewskija, wild-type line (WS), nhx1 'knockout' line, and a knockout restoration lin
v2 – E. Blumwald and J. Sottosanto, arabidopsis, A. thaliana ecotype Wassilewskija, wild-type line (WS), and a nhx1 'knockout' line (unpublished data).
w – D. Honys and D. Twell, ATH1, Arabidopsis thaliana ecotype Landsberg erecta plants [50].
x – E. Nambara and K. Nakabayashi, ATH1, Arabidopsis thaliana (L.) Heynh of ecotype Columbia [51].
y – E. Nambara and K. Tatematsu, ATH1, Arabidopsis thaliana (L.) Heynh of ecotype Columbia [52].

Table 4: Summary of values of the coefficients of standard deviation function and Kα coefficients (Continued)
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subsequently counted the common genes found in any
two particular subsets. The mean values of all possible
comparisons are shown in the fourth row of Table 6a. The
values shown in the last row represent the ratio of the
mean number of common genes relative to the mean
number of the genes that passed the test for each subset
(third row) in percent. In the case of the t-test, the average
for the over- and under-expressed genes was 23 and 29
percent, respectively. By comparison, the coincidence test
for the over-expressed genes yielded 75% and RMA 81%;
in the case of the coincidence and RMA, the mean num-
bers of under-expressed genes were below ten and the

comparisons were considered unreliable (data not
shown). In only this example we used MAS 5 generated
values. Table 6b shows the results of similar tests carried
out using the Illumina fiberoptic bead-based oligonucle-
otide arrays. In this case the average percentages of agree-
ment for the coincidence tests were 89.1, to compare to
48.2%, obtained for the t-test. A more detailed compari-
son under slightly different assumptions, which includes
also the CyberT and Tusher's method, can be found in Ref.
[8].

Discussion
In our practice we adopted the approach of Affymetrix,
which estimates the background from 2% of the probes
with the lowest signals, uses the MM probes for the esti-
mate of the non-specific component and yields an esti-
mate of an "absolute" value of the RNA abundance. We
adhered to the Affymetrix philosophy in spite of popular-
ity of the global fitting methods, such as dChip [3,4] and
RMA [6,7], because it provide us with a representative
expression values independently for each array, enables us
to assess consistency of the observed values and detect
irregularities and outliers. This is an important advantage,
considering how frequently we detect "atypical" arrays
among replicates. Furthermore, consistency checks have

Standard deviation of the Focus arrays, arrays 01 to 09Figure 5
Standard deviation of the Focus arrays, arrays 01 to 
09. Standard deviations are calculated from the individual 
probe sets of nine samples. The solid curve represents the 
standard deviation function derived from the consecutive 
sampling. The regression curve corresponding to logarithm 
of the linear standard deviation function fitted to logarithm of 
the experimental standard deviation (not shown) overlaps 
the consecutive sampling approximation; the coefficients 
obtained from consecutive sampling are a1 = 2.92√2 and a2 = 
0.153√2 and the regression coefficients obtained from indi-
vidual probe sets are a1 = 2.87 and a2 = 0.154 (data Modlich, 
Focus 1).
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Dispersion of the murine tissue data, array MG-U74Av2, samples MT4-07 and MT4-08Figure 4
Dispersion of the murine tissue data, array MG-
U74Av2, samples MT4-07 and MT4-08. A. Dispersion 
plot and boundaries of the 0.8 and 0.95 probability intervals. 
B: Standard deviations calculated using the expression differ-
ence in consecutive samples and the regression curve (solid 
line), representing the standard deviation function (data 
Cosio).
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shown similar rates of coincidence for both RMA and
coincidence testing (Table 6a).

Results of the published studies comparing various meth-
ods of analysis are inconsistent and do not provide a clear
guidance for selection of the method. Irizarry et al. [7],
e.g., reported better detection of differentially expressed
genes by RMA as compared to the dChip [4] and Affyme-
trix "Average Difference" (MAS 4) and MAS5 methods.
Similarly, Barash et al. rated RMA as the best of the three
with dChip performing slightly better than MAS5 [16].
Shedden et al. [17] claim superior results for dChip and
"trimmed mean" and inferior results for MAS5 and one
version of RMA (GCRMA-EB); the other version of RMA
(CGRMA-MLE; Wu Z, Irizarry R, Gentleman R, Murillo F,
Spencer F., 2003, A Model Based Background Adjustment
for Oligonucleotide Expression Arrays, Technical Report,
John Hopkins University, Department of Biostatistics
Working Papers, Baltimore, MD) produced mixed results
(in trimmed mean the PM-MM differences are ordered,
20% of the highest and lowest values are deleted and the
mean of the remaining probe pairs represents a measure
of gene expression). Han et al. [18] compared the Affyme-
trix MAS 5, dChip using PM-MM and PM only input and
RMA. In this study the PM only variant of dChip and RMA
showed the best performance. The authors also noted that
the coefficient of variation in replicate experiments in the
case of MAS 5 increases with a decreasing mean signal, but
remains approximately constant for PM only of dChip
and RMA. Invariance of the coefficient of variation raises
a certain concern: percentage of contribution of the non-
specific signal increases with the decreasing concentration
and one would expect that at low concentrations it would
be harder to separate it from the specific component.
Choe et al. [19] compared various combinations of the six
steps in the differential expression analysis: background
subtraction, probe-level normalization, PM adjustment
(correction for the non-specific signal), expression sum-
mary (derivation of the representative gene expression
from the multiple probe signals), probe set-level normal-
ization and statistical evaluation. This was a particularly
interesting comparative study, since their experimental
design was much closer to real conditions than spiked sets
of arrays used in other publications. The authors report
that the combination of the MAS5 for background correc-
tion and PM adjustment, median Polish method or, mar-
ginally inferior, MAS5 for expression summary, loess for
normalization and CyberT for statistical evaluation [20]
yielded the best results. They also emphasized that, under
their particular conditions, MM signals provided the best
estimate of the non-specific component. Furthermore,
they concluded that in the statistical evaluation it is
important to account for variation of the standard devia-
tion with the mean expression (see also [21]). They
adopted the CyberT model proposed by Baldi and Lang

Comparison of the Kα distribution and inverse t-distributionFigure 7
Comparison of the Kα distribution and inverse t-dis-
tribution. Kα values correspond to probabilities from 0.5 to 
0.995. The degree of freedom for the inverse t-distribution 
(solid lines) is 6 and 12.
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Correlation of the Kα coefficients and inverse t-distri-
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[20], which uses consecutive samples to estimate the
expression-dependent component of the standard devia-
tion, similarly to our approach.

In the present analysis of the frequency distributions and
properties of the Kα we used the MAS 4 software, instead
of MAS 5 or GCOS. The reason is that these more recent
versions distort the frequency distribution and standard

deviation function in the near-zero region. In the case of
the Affymetrix arrays the estimate of additive signal,
caused by nonspecific binding and other spurious phe-
nomena, is based on the mismatch signal. The estimate of
the "true" gene expression is then derived from the differ-
ence between perfect match (PM) and mismatch (MM).
However, in such system the variability of this difference
is a "true" measure of the absolute gene expression varia-
bility. Negative difference does not mean that the gene
expression is negative, but simply that the MM signal is
larger than PM. It is perfectly logical that in absence of a
given RNA the MM signal would exceed PM in about 50%
of cases. The frequency distribution of the PM – MM dif-
ference in the absence of a specific RNA is the best meas-
ure of the constant component of spurious signal, added
to the "true signal" value. Such estimate cannot be derived
from MAS 5 or GCOS data. Replacing the negative values
resulting from the signals actually measured by the PM
and MM probes by arbitrary numbers introduces incon-
sistency in the method of evaluation and leads to decrease
of the standard deviation with decreasing signal level in
near-zero region (unpublished observation). In the low
expression region it also leads to a substantial increase in
number of probe sets that deviate from the normal distri-
bution [22]. Nevertheless, at the expression levels above
about 50 (normalized to 100% of the mean) our observa-
tions and conclusions hold even for the data analyzed
with MAS 5 or GCOS. Some methods of analysis, such as
RMA and one variant of the dChip, avoid the negative val-
ues without introducing inconsistency in evaluation by
using the PM values only.

Average Kα coefficients at the intervals 0.95 and 0.995Figure 8
Average Kα coefficients at the intervals 0.95 and 
0.995. Correlation of the Kα coefficients with the sum of the 
feature size and number of probe pairs; bars show the stand-
ard deviation for the interval 0.995.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

20 25 30 35 40 45 50

TF

K
a
lp

h
a

probability 0.995

probability 0.95

regression

 

Table 5: Overview of the GeneChip types

GeneChip Feature size Probe pairs TF No. of labs. No. of arrays Ka 0.95 Ka 0.99 Ka 0.995

avg SD avg SD avg SD

HuGeneFL 24 20 44 2 34 2.13 0.10 3.45 0.09 4.11 0.05
HG-U95Av2 20 16 36 4 77 2.09 0.09 3.04 0.08 3.48 0.16
HG-U95B to E 20 16 36 2 28 2.16 0.14 3.24 0.31 3.76 0.37
HG-U133A 2.0 11 11 22 6 91 2.11 0.05 3.10 0.15 3.56 0.18
HG-U133 Plus 2 11 11 22 2 28 2.12 --- 3.03 --- 3.44 ---
HG-Focus 18 11 29 1 34 2.18 0.03 3.11 0.04 3.52 0.07
MG-Mu11kSubA, SubB 24 20 44 2 80 2.22 0.04 3.73 0.16 4.52 0.20
Mu19kSubA, B, C 24 20 44 1 12 2.26 --- 3.95 --- 4.56 ---
MG-U74Av2 20 16 36 6 75 2.17 0.04 3.36 0.20 3.97 0.31
MG-U430A 11 11 22 1 20 2.07 0.03 2.95 0.03 3.34 0.03
RG-U34A 24 16 40 2 45 2.16 0.05 3.24 0.15 3.78 0.17
RT-U34 Neurobiology 24 16 40 1 40 2.08 --- 3.12 --- 3.38 ---
Drosophila 20 14 34 1 6 2.17 --- 3.21 --- 3.67 ---
E. Coli 24 15 39 2 53 2.19 --- 3.31 --- 3.78 ---
ATH1 18 11 29 4 64 2.09 0.02 3.03 0.11 3.46 0.19
Arabidopis [s2] 24 16 40 1 7 2.15 --- 2.89 --- 3.18 ---

The first two columns of data show the feature size and number of the probe pairs per probe set. TF is the technical factor defined as the sum of 
feature size and probe pairs. No. of lab gives the number of different laboratories, where the data were generated. No. of arrays gives the number 
of arrays per the GeneChip type. The last three columns give the mean Kα values at the probability 0.95, 0.99 and 0.995.
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In the preceding section, we demonstrated that the fre-
quency distribution of the random and pseudo-random
fluctuations of microarray data is predominantly normal.
The normal frequency distribution is a useful property,
allowing straightforward identification of outliers, a con-
venient quality check and simple characterization of the
observed data. Normality of the error term is an important
assumption of various global models used for the analysis
of measured probe signals, such as dChip [3,4], RMA [5-
7] and other approaches [23-25]. Among these only
Pavelka et al. [25] demonstrated that the assumption is
justified. Normality is also a necessary condition for appli-
cation of the parametric methods. Here we observed that
on average over 5% of samples deviate from the normal
distribution (using the test threshold of 0.05). It is agreed
that the t-test and ANOVA are rather robust with respect to
normality (e.g. SigmaStat software [SPSS inc.] uses for
ANOVA the threshold of 0.01), nonetheless the noted
deviations call for caution when using parametric meth-
ods, in particular considering that every analysis involves
multiple testing. Our conclusion differs from that of
Gilles and Kipling [22], who studied normality of Gene-
Chip data using a set of 59 Affymetrix HG-U95A microar-
rays with human pancreatic cRNA. The authors concluded
that "...data provide strong support for the application of
parametric tests to GeneChip data sets without the need
for data transformation." However, Shapiro-Wilks test,
applied to the MAS 4 evaluated data, detected 28% of
probe sets deviating from normality at the level P < 0.05.
The authors argued that the Shapiro-Wilks test is, perhaps,
too sensitive, since the Q-Q plots of the observed and nor-

mal values show high correlation. In our opinion, correla-
tion is not a reliable measure of normality. The correlation
coefficient can be high in spite of a small number of out-
lying points that might sufficiently affect variance to lead
to false positive conclusions. Gilles and Kipling also
observed an excessively high percentage of deviations
from normality at low expression levels in data evaluated
using MAS 5 and deduced that the most likely reason is
MAS 5 treatment of negative values.

The probability of any value in normally distributed pop-
ulations can be expressed as a number of standard devi-
ates. For example, expressing the difference between the
mean of a given population and a particular measurement
in standard deviates enables us to compare this difference
to the standardized z-distribution and determine, among
other things, the cumulative probability of occurrence.
For example, the standard deviate of 3.09 corresponds to
the cumulative probability of measurements in the tails of
the distribution function P = 0.001, a conventional
threshold for identifying outliers in small-size samples. In
the case of microarrays, we do not have single standard
deviate values but standard deviate functions, defined by
the Kα coefficients. Nonetheless, the same reasoning
applies. The necessary and sufficient condition for "stand-
ardization" of microarray dispersion is that the Kα coeffi-
cients must be invariant. Under such condition
differences expressed in Kα variable are universal, inde-
pendent of the particular properties of RNA samples, type
of array, etc. This is of a practical significance for compar-
ative studies, such as studies comparing results obtained

Table 6: Summary of the results of consistency tests

a)

t-test: P < 0.010 Coincidence RMA

Above or Below above below above above
Mean of 4-sample test 58.2 72.0 29.4 40.4
Common to 2 sets (mean) 13.5 20.5 22.1 32.9
SD 2.3 2.8 3.4 6.0
Ratio % 23.2 28.5 75.2 81.4
b)

Coincidence, interval 0.9 Coincidence, interval 0.8 t-test P = 0.0016

Mean of 3-samples test (7 of 9) 12.3 17.5 11.0
Common to 2 sets (average) 10.2 16.7 5.3
Ratio (%) 83.0 95.2 48.2

a) The t-test, coincidence test and RMA on MG-U75Av2 array (five samples; data Ref. [15]). The data were subject to one-tail t-test at the level 
0.01, coincidence test and RMA. The coincidence and RMA tests were not carried out for the cases below the interval, since the numbers of 
occurrences were too small. The means of positive cases in five four-sample tests are given. The means of genes common to any two trials are 
shown. Ratio of the means is given in percent. b) The t-test and coincidence test, Illumina (four samples; data Ref. [8]). The second and third 
column list the number of genes identified by the coincidence method for the interval 0.9 and 0.8, respectively. The last column shows the numbers 
of genes that satisfied the t-test. The first and second rows of data give the mean number of genes that passed three-sample sets and the mean of 
the genes passing concurrently in two particular tests, respectively.
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in different laboratories [26-28], different generations of
the Affymetrix array [29,30] or in different species [31-
34].

Analysis of significance in assays with less than five repli-
cates always represents a problem. Parametric methods
are not reliable in the case of small samples and the non-
parametric Mann-Whitney test and ANOVA on ranks pro-
vide a very crude estimate for three or four samples and
are not very reliable either. Before asserting the invariance
of Kα values, we used probability intervals in pair-wise
case-control comparisons and selected as candidate genes
the genes that fell outside a given interval in predeter-
mined number of comparisons [8,15]. We refer to this
method as the "consecutive sampling and coincidence
test." A more appropriate approach would be to estimate
Kα coefficients representing the random variability from
replicate arrays and apply the coincidence test to the ini-
tial sets of genes lying outside the intervals defined by
these values.

Besides the significance estimates, we found that the prob-
ability intervals determined by Kα coefficients are very use-
ful for filtering out the random probe sets prior to the
clustering analysis, in particular when hierarchical cluster-
ing or principal component analysis is employed. Another
straightforward application is to select the relevant set of
genes for pathway analysis. Finally, disproportionate Kα
coefficients indicate a problematic pair of arrays, usually
with nonlinear behavior or large clusters of outlying
genes.

Conclusion
We provide evidence that the majority of microarray sam-
ples, typically between 85 and 95 percent, conform to a
Gaussian distribution. Monitoring excessive number of
consecutive samples that fail the Kolmogorov-Smirnov
normality test is a useful method of quality control in
automated analysis of gene expressions.

We used the consecutive sampling method to determine
Kα coefficients defining the probability intervals in pair-
wise comparisons. Subsequently, we demonstrated that
these coefficients are, in the first approximation, inde-
pendent of the nature of sample, the laboratory condi-
tions and the type of array. The Kα coefficients within the
range of probabilities from 0.5 to 0.995 correlate very well
with t-distribution. Filtering out the genes with expres-
sions within the probability intervals defined by Kα coeffi-
cients can significantly enhance the performance for
clustering methods, especially for hierarchical clustering
and principal component analysis. Finally, selecting the
genes that fall outside a specific probability interval in a
specific number of pair-wise comparisons provides a con-
venient, nonparametric method for estimating the signif-

icance of observed differences, advantageous, in
particular, in case of assays with a small number of repli-
cates.

Our main objective in studying the invariant properties of
Kα distribution was to examine the arrays from many dif-
ferent experiments in different laboratories, rather than
replicate assays, to verify technology or method of analy-
sis. The fact that even under such diversity of data the Kα
distribution is so stable and so close to t-distributions
implies that the Affymetrix technology provides "true"
representation of quantitative phenomena, involved in
measurement of the abundance of RNA in studied media.
However, improving the precision and devising the most
effective methods of evaluation still remain a challenge
for future development.

Methods
Consecutive sampling program
The first version of the consecutive sampling method was
published by Novak et al. [10]. Briefly, the program ranks
the probe sets of two arrays under comparison (say array
A1 and A2) according to the mean expression and defines
the samples of k consecutive pairs of values ("consecutive
samples"; typically k = 12, 25 or 50, depending on the size
of the array). Then it calculates the standard deviation of
samples from the difference of expressions and fits loga-
rithm of the linear function

SD = a1 + a2Ymean  (1)

to the logarithm of calculated values; here Ymean is the sam-
ple mean and a1 and a2 are the intercept and coefficient
proportionality, respectively. The logarithmic transform
prior to the regression is used solely to equalize the
residua. Without the transform the high-expression
residua greatly outweigh the low-end values and lead to
an inaccurate approximation in the near-zero range. After
the fitting the standard deviation function is inverse-trans-
formed back to the original scale. Since the range of mean
values within the samples must be small, we exclude an
adequate number of the probe sets below the maximum
expression, where the density of the probe sets per unit of
expression is low (see the identity test below). This is nec-
essary to avoid inaccurate values caused by large differ-
ences of the mean values within the samples. Once the
standard deviation function is determined, it is assumed it
can be extrapolated to the maximum expression. Table 1
illustrates the procedure. The column "Rank" shows the
rank from the highest mean expression, columns "Sam-
ple" give the expression values of the arrays A1 and A2, "Y2-
Y1" is the expressions difference, "(Y2+Y1)/2" is the
expression mean, "Sample Mean" is the mean expression
of the sample, "SD(Y2-Y1)" is the standard deviation
obtained from the difference of expressions and
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"SD(Y1)+SD(Y2)" is the sum of the standard deviations
calculated from the values Y1 and Y2, respectively. The
first 250 probe sets were excluded from the regression pro-
cedure to ensure that the variation of the mean expression
of two arrays in a given consecutive sample is small.

When the standard deviation function is determined, the
program calculates the boundaries of chosen probability
intervals as functions of the mean expression. The upper
and lower limits in the dispersion plot Y2 versus Y1 are
defined as

and

,

where Kα is a constant corresponding to the probability
interval α (see Additional file 1).

Three reliability checks were incorporated into the consec-
utive sampling program. First is the identity test, which
verifies the equality

SD(Ydiff) = SD(Y1) +SD(Y2),  (4)

where SD(Ydiff) and SD(Yi) are the standard deviations cal-
culated from the expression difference and from the
expression values of the individual (first or second) arrays,
respectively [10]. It provides a good verification of varia-
bility of the mean values within samples; we usually
require the mean discrepancy of the ten consecutive sam-
ples below 1%. The second reliability check calculates the
average number of samples failing the Kolmogorov-Smir-
nov normality test (P = 0.05) and the third compares the
number of genes beyond the 0.95 probability interval to
the number, corresponding to the same interval of the
normal distribution with the same mean and standard
deviation.
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Reviewers' comments
Reviewer's report 1
Yoav Gilad, Dept. of Human Genetics, University of Chicago,
920 E. 58th Street – CLSC 325C, Chicago, IL 60637, USA
(nominated by Doron Lancet, Department of Molecular Genet-
ics, Weizmann Institute of Science, Rehovot 76100, Israel).

I agree with the authors that it is important to characterize
the dispersion – along with other properties of microarray
data. I also agree that many of us in this field are analyzing
our data without being properly aware of the assumptions
we make. In that respect, the presented analysis is useful
and the results are reassuring. If I am not mistaken, Gary
Churchill has previously demonstrated that normality is a
valid assumption for expression data, and his work
should be cited here.

I am not a statistician and hence do not feel qualified to
comment on the details of the statistical analysis pre-
sented in this manuscript (I recommend that it will be
seen by at least one statistician prior to publication).
However, I do question the validity and relevance of the
analysis of the PM-MM signals. While the rationale pre-
sented in the paper (not different than what is claimed by
Affymetrix) is clear, empirical observations (including in
my own group) suggest that in many cases nearly all the
binding – both to the PM as well as to the MM – is of the
specific RNA of interest. In those cases, the power to
'detect' expression, as well as the power to estimate non-
specific hybridization, is weak. Moreover, in many cases
(again-including in our hands), negative PM-MM values
were observed while the expression of specific RNA of
interest could be demonstrated by other means (such as
RT-PCR). I believe that work by others (mostly cited by
the authors) demonstrated that the power to detect differ-
ential expression is higher when PM-only estimates are
considered. Perhaps studying the properties of PM-only
data will be proven more useful.

Author Response: First we would like to thank Dr. Gilad for
his review and for bringing up an interesting issue of the MM
signals. Regarding the question of normal distribution, we
looked over Dr. Churchill's papers dealing with microarray
technology, including Cui et al. Biostatistics (2005) [a], 6:59–
75, Cui and Churchill, Genome Biology (2003), 4:210 [b],
Churchill, BioTechniques (2004), 37:173 [c], Kerr, Church-
ill. Genet Res. (2001), 77:123 [d], Kerr, Churchill (2001),
PNAS, 98:8961 [e], Kerr et al. (200), J. Comp. Biol., 7:519
[f], but we did not find confirmation of normality in dispersion

Y
Y K a a Y

K aU =
+ +

−
( )1 1 2 1

2

2

1 2
2α

α

( / )

/

Y
Y K a a Y

K aL =
− +

+
( )1 1 2 1

2

2

1 2
3α

α

( / )

/
,

Page 19 of 24
(page number not for citation purposes)



Biology Direct 2006, 1:27 http://www.biology-direct.com/content/1/1/27
of single-color microarrays. In case of the spotted two-color
microarrays the authors detected non-normal distribution of
residues [d-f].

Regarding the question of usefulness of MM signals: Our main
objective is to show that the dispersion across all types of arrays,
experimental conditions and organisms exhibits some common
basic properties and we did not intend to make a case in favor
of the Affymetrix approach. Nonetheless, we feel that the fact
that such common description can be found supports reasoning
of the Affymetrix.

The discussion is still on and various arguments have been
brought up both for and against using the MM signals. We fully
agree with the reviewer that a major part of the signal of MM
probes is due to the "specific" RNA of interest. However, this is
to be expected, since among all RNA molecules attaching to the
MM probe, the particular RNA of interest is most likely closest
to its structure. It is exactly the ability to distinguish between the
perfect match and "almost-perfect-match" that makes the
measured signal reliable. If a substantial quantity of the specific
RNA is present and the signals of both PM and MM are equal
or MM exceeds PM, it suggests either saturation or low distin-
guishing power. Under such circumstance the MM signal pro-
vides useful information, indicating that the particular PM
signal might not reflect the true RNA concentration. In case of
saturation, taking the PM signal only would correctly indicate
that the specific RNA is present, however, the relationship
abundance-signal would be strongly nonlinear. As we mention
in the Discussion, the results of various studies aiming at vali-
dation of different approaches are inconclusive. Evidently, more
research is needed to establish the optimal technology and cor-
responding statistical procedures. It is likely that no single
methodology could be found universally optimal and different
circumstances would call for different approaches.

Reviewer's report 2
Sach Mukherjee, Department of Statistics, University of Cali-
fornia, Berkeley, CA, 94720-3860, USA (nominated by San-
drine Dudoit, Division of Biostatistics, School of Public Health,
University of California, Berkeley, CA 94720-7360, USA)

The authors present an empirical study of the distribu-
tional characteristics of data from Affymetrix gene expres-
sion microarrays. One of the questions posed at the outset
concerns the relationship between the mean and variance
of microarray data ("it is useful to know how the standard
deviation behaves across the expression range...", [Back-
ground, §2]) and is subsequently answered in the follow-
ing way: "...the standard deviation is linearly proportional
to the mean expression level" [Results, Frequency distri-
butions, §3]. However, this latter finding seems widely
recognized already, and has been discussed in some detail
in the literature (e.g. Rocke and Durbin, 2001; Durbin et

al. 2002; Huber et al. 2002). Yet none of these papers are
cited in the article.

Author Response: We agree that the fact that the standard
deviation in the high region is proportional to the signal and at
the low end it does not converge to zero has been generally
accepted, but we are not aware of the study that systematically
verified the linear relationship. Rocke and coworkers derived a
similar model from theoretical considerations and correspond-
ing references were included.

The authors also criticize the use of log-transformation
[Background, §1] (again without referring to the literature
on the topic) but then seem to use just such a transforma-
tion as a pre-processing step before regression [Results,
Consecutive sampling analysis, §1]. Yet under a data
model with both multiplicative and additive noise, data
are only log-normally distributed at high expression levels
(Durbin et al. 2002). Furthermore, log-transformation
may inflate the variance of observations with low expres-
sion levels. Indeed, the authors find that "...larger percent-
ages of failures [in passing a K-S test of Normality] occur
in the near-zero region." [Results, Frequency distribu-
tions, §1]. Might not this effect simply be due to the log-
transformation?

Author Response: It appears that our procedure was not
clearly described and we revised the text accordingly. We actu-
ally use the logarithmic transform only in the regression proce-
dure to balance the residuals, i.e. to prevent the residuals of the
high-expression genes to outweigh the low-expression range.
Thus instead of regressing

SD(Ymean) → a1 + a2Ymean

we fit

log(SD(Ymean)) → log(a1 + a2Ymean)

Consequently, the determined characteristic function represents
the standard deviation of the original (normalized) data and
not log-transformed data. This is the only occasion when we use
the log-transform, in all other procedures we employ non-trans-
formed normalized data.

This reviewer found the approach taken to "consecutive
sampling" in studying the mean-variance relationship in
paired arrays somewhat ad hoc. For example, the 250
probe sets having highest expression level are excluded
from the analysis. What effect does this exclusion have on
the analysis? Is it appropriate to leave out data (arguably
some of the most interesting data) from an empirical
study of this kind? This issue is not really discussed. The
authors also state that "we usually require the mean dis-
crepancy of the ten consecutive samples below 1%"
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[Methods, §1]. Does this mean the data are ignored if the
discrepancy is higher than this threshold?

Author Response: The consecutive samples provide reliable
representation of the standard deviation only if the within sam-
ple differences of means are small, say below 1%. At the maxi-
mum of the expression range the density of the points is small
and, consequently, differences in the mean values are large. To
obtain dependable coefficients of the standard deviation func-
tion these data have to be excluded from the regression proce-
dure. Subsequently, we assume that validity of the standard
deviation characteristic function can be extrapolated to the
maximum expression value. Indeed, in the differential expres-
sion analysis all data to the maximum expression are included.
The text was revised to avoid misunderstanding.

Regarding a discrepancy in identity (4): The consecutive sam-
pling program automatically keeps track on assumptions and
signals detected problems. Identity (4) is a convenient check of
the variability of means and, generally, of the reliability of char-
acteristic function; it is typically fulfilled within 0.1%. If the
difference between the right-hand and left-hand sides of the
equation exceeds 1% the program raises a flag, indicating prob-
lematic data. In such case the researcher conducting analysis
examines the data and determines the reason for discrepancy;
if no corrective measure can be found, the sample is excluded
from the analysis.

The presentation of mathematical details is not always
very clear in the paper. Equations (2) and (3) would ben-
efit from either a derivation or a reference. Equally, some
of the phrasing is somewhat difficult to interpret, e.g.
"...we can calculate an estimator of the standard deviation
of gene expressions variability of a population of replicate
arrays from two-array comparisons" [Results, Consecutive
sampling analysis, §1 (the text before revision)].

Author Response: Derivation of equations (2) and (3) is
described in Additional file 1. The sentence in question was
reformulated.

Finally, this reviewer found the introduction of a new
methodology for finding differentially expressed genes
[Results, Probability intervals and correlation of the Kα
coefficients with t-distribution, §5 onwards] puzzling
inasmuch as it did not relate to, or strengthen, any of the
main arguments of the paper. The case presented was also
far from convincing: given that there are so many existing
methods for detecting differential expression, it is surely
reasonable to expect any new method to be accompanied
by strong empirical evidence and/or theoretical argu-
ments in its favor.

Author Response: Actually, the application of the probability
intervals to the differential expression analysis had not been

included in the earlier versions of the manuscript. However,
during the internal reviews we frequently encountered a ques-
tion "how can the dispersion analysis and probability intervals
help biologist to analyze data and to detect significant differ-
ences in gene expression" (see also comment of the third refe-
ree). To answer this question we included a brief description of
the consecutive sampling and coincidence analysis, which we
use as a standard procedure, usually in combination with the
RMA and/or other approaches. To provide better description we
revised the text and included an additional reference.

In conclusion, the basic idea behind the paper, of charac-
terizing microarray data distributions using a large set of
real-life experimental data, is a very good one, but the
paper is not well tied to the literature and suffers at times
from a somewhat ad hoc approach.

References:

Rocke DM, Durbin B. Approximate variance-stabilizing
transformations for gene-expression microarray data. Bio-
informatics. 2003 May 22; 19 (8):966-72.

Durbin BP, Hardin JS, Hawkins DM, Rocke DM. A vari-
ance-stabilizing transformation for gene-expression
microarray data. Bioinformatics. 2002; 18 Suppl. 1:S105-
10.

Huber W, von Heydebreck A, Sultmann H, Poustka A,
Vingron M. Variance stabilization applied to microarray
data calibration and to the quantification of differential
expression. Bioinformatics. 2002; 18 Suppl. 1:S96-104.

Reviewer's report 3
Amir Niknejad and Shmuel Friedland, Department of Mathe-
matics, Statistics and Computer Science University of Illinois at
Chicago 851 S. Morgan Street Chicago, IL 60614 USA (nom-
inated by Neil Smalheiser, Department of Mathematics, Statis-
tics and Computer Science, University of Illinois at Chicago,
851 S. Morgan Street, Chicago, IL 60614, USA)

The paper addresses issues related to analysing DNA
Microarrays data focusing on differences of gene expres-
sion. The paper is an extension of previous paper of J.P.
Novak (reference# 8) by employing various parametric
and nonparametric statistics tools and extensive use of sta-
tistical packages for very large data sets. The premise of the
paper is that the standard deviation of samples of differ-
ence of gene expression in DNA microarrays is a linear
function of their mean. The paper is a very good work in
the area of quality control of Data in DNA Microarrays
and certainly a contribution to the field. There are several
points that the authors should clarify:
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1. The authors mentioned that "majority of microarray
samples (85%–95%) conform to a Gaussian distribu-
tion". What is the reason for the rest of 5%–15% of micro-
arrays sample which do not conform with normality? Is it
a biological reason or just manufacturing technology
problem?

Author response: We thank Dr. Niknejad and Dr. Friedland
for the very helpful review. In response to the question above:
According to our extensive experience with the Affymetrix
arrays and limited experience with the Illumina fiberoptic bead-
based oligonucleotide microarrays, the manufacturing technol-
ogy is an unlikely reason. The outliers, the most frequent cause
of non-normal distribution, are probably caused by random
fluctuations in the experimental procedures, such as hybridiza-
tion or labeling. A discontinuity in the frequency distribution
(i.e. one part of the curve having systematically higher coeffi-
cient of amplification than the other) or its derivative is diffi-
cult to explain. (Note that the number of the cited reference by
Novak et al. was changed from 8 to 10.)

2. The authors mentioned that "filtering 15% of genes
would enhance the performance for clustering methods".
The question is how is this filtering being done, and what
is its effect on the data set as a whole and the biological
ramification of it.

Author response: Generally, all clustering methods are sensi-
tive to noise, however, the problem is more difficult in unsuper-
vised clustering, where members of presumed classes are
unknown. Hierarchical clustering and principal component
analysis appear to be among the most sensitive, while self
organized maps are more robust. Approach to the problem and
optimal percentage of the probe sets filtered out depends on a
given set of data. Actually, we did not specify percentage in the
text – fifteen percent is relatively low and should refer to the set
used for analysis, usually reduced by eliminating probes with
overall near-zero values. For the clustering procedures we raise
the required threshold and try to identify "informative" probe
sets, i.e. probe sets likely to be characteristic for presumed
classes. Very small groups are virtually impossible to discover in
noisy data, so we assume some minimum number k of samples
in any particular group – say k ~ 5. Then we select only the
probe sets, with k or more expression at least r-fold larger or s-
fold smaller than the total median; typically 2 < r, s < 5. It is
important to repeat the clustering procedure for several sets of
parameters to ensure that the identified classes are independent
of filtering constanst.

We are also concerned with mostly focusing on Affymetrix
technology for coming up for means of quality control
receipt. It will be a good idea to see how their model fares
for other brands of microarrays.

Author response: Our experience is limited to the Affymetrix
and Illumina microarrays. However, in our opinion, it is likely
that dispersion characteristics of all single-color arrays are sim-
ilar.

It would be helpful if the authors mention how their find-
ings can help molecular biologists to make inferences
about gene expression data of various microarray data sets
and their biological implications.

Author response: Beside filtering of the randomly variable
probe sets in noisy data the most practical application is combi-
nation of the consecutive sampling analysis and coincidence
testing applied to evaluation of the observed differences between
experiment and control arrays. The unique advantage of this
approach is that it can be applied to assays with small number
of replicates (two or more). It is a nonparametric method, the-
oretically equivalent to repeated random selection, and it is easy
to estimate the probability of false positives. Moreover, it is
based on pair-wise comparisons and it enables automatic detec-
tion of problematic arrays. We extended the discussion of this
application in the section Results and added two references.
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