
The ins and outs of intracellular ion homeostasis:
NHX-type cation/H+ transporters
Elias Bassil and Eduardo Blumwald

Available online at www.sciencedirect.com

ScienceDirect
The biochemical characterization of cation/H+ exchange has

been known since 1985 [1], yet only recently have we begun to

understand the contribution of individual exchangers to ion

homeostasis in plants. One particularly important class of

exchangers is the NHX-type that is associated with Na+

transport and therefore salinity tolerance. New evidence

suggests that under normal growth conditions NHXs are critical

regulators of K+ and pH homeostasis and have important roles,

depending on their cellular localization, in the generation of

turgor as well as in vesicular trafficking. Recent advances

highlight novel and exciting functions of intracellular NHXs in

growth and development, stress adaptation and osmotic

adjustment. Here, we elaborate on new and emerging cellular

and physiological functions of this group of H+-coupled cation

exchangers.
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Introduction
Developmental cues and the need to respond to changes

in their environment, require plants to constantly adjust

their cellular pH and ion contents. Ion transport plays a

defining role in the provision of energy, uptake and

sequestration of ions and organic metabolites, as well

as cell expansion. Cell expansion, and therefore growth,

depends on turgor pressure that is generated by the

coordinated regulation of vacuolar ion and water uptake,

and the augmentation of membrane area and cell wall

components that are provided by trafficking vesicles. In

plants, H+ is the motive ion and H+ electrochemical

gradients are generated by the H+ translocating enzymes,

the H+-ATPase at the plasma membrane or the V-

ATPase and PPase in intracellular compartments, to

energize the secondary active transport of ions and
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metabolites. Cation/H+ exchangers use the H+ gradient

to couple the passive transport of H+ to the movement of

cations against their gradient [2]. The coupled exchange

of K+ or Na+ for H+ occurs in all organisms and cellular

compartments [3,4,5�] and is mediated in part by a family

of transporters known as Na+/H+ antiporters (NHXs) in

plants or Na+/H+ exchangers (NHEs) in animals. Much

work has traditionally focused on use of NHXs in salt

tolerance but more recent evidence suggests basic cellular

roles that go beyond Na+ transport into vacuoles.

Diversity of plant NHX-type Cation/H+

antiporters
Plant NHXs belong to the large CPA family of mono-

valent cation/H+ transporters (CPA1), together with clo-

sely related members that include the CHX and KEA

(CPA2) exchangers [5�]. Phylogenetic and sequence

analysis of available plant genomes (i.e. phytozome.net)

indicate that NHXs are ubiquitous to all eukaryotic

organisms. Arabidopsis contains eight isoforms belonging

to three classes; two divergent members located at the

plasma membrane (SOS1/AtNHX7 and AtNHX8); and

six intracellular isoforms that are either vacuolar

(AtNHX1 to AtNHX4) or in vesicles (AtNHX5,

AtNHX6) [6] (Fig. 1). Interestingly, highly similar ortho-

logues to members of each Arabidopsis class are found in

genomes ranging from Chlamydomonas to tomato (Table

1). The fact that these NHX classes are represented even

in algae, suggests that vacuolar, vesicular and plasma

membrane NHXs have unique cellular functions that

have been conserved early in evolution [5�,6].

Biochemical functions and regulation
A generally accepted mode of NHX operation, known as

alternating access [7], results in the transport of either K+

or Na+ into the vacuole or endosome in exchange for H+

efflux to the cytosol (NHX1–6) and Na+ efflux out of the

cell in exchange for H+ influx into the cell (plasma

membrane-bound NHX7–8) [6]. No available crystallo-

graphic structures of plant NHXs are available but bio-

chemical and kinetic studies suggested that NHXs likely

contain 9–12 transmembrane (TM) domains [8].

Epitope tagging of heterologously expressed NHX1

revealed that this antiporter has 9 TM domains with an

additional 3 ‘buried’ domains that do not entirely span the

membrane [8]. The membrane-spanning pores and

putative cation binding domains are highly conserved

among plants NHXs, yeast Nhx1 and animal NHEs

[3,9,10]. NHXs differ most at their C terminus [3,5�].
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Figure 1
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Schematic diagram of a plant cell indicating the distribution of Arabidopsis NHX antiporters in subcellular compartments. Luminal pH of intracellular

compartments is noted below each compartment according to Ref. [49��]. Trans-Golgi network (TGN), prevacuolar Compartment (PVC). Note that only

NHX5 is shown in the TGN and PVC but that NHX6 is also colocalized in these compartments (Blumwald et al., unpublished results).
Protein-protein interactions, phosphorylation and/or gly-

cosylation [6] are proposed to be a means by which

antiporter activity or localization could be differentially

regulated. A unique feature of NHX1, that differed from
Table 1

Number and type of NHX genes belonging to each functional cla

www.phytozome.net) was blasted with the following Arabidposis sequ

the list of plant species shown were identified. The three Arabidopsis 

endosomal/vesicle (Class II) type of NHX genes. Species were selecte

Classification Species Vacuolar (

Dicot Arabidopsis thaliana 4 

Solanum lycopersicum 3 

Medicago truncatula 7 

Phaseolus vulgaris 7 

Glycine max 7 

Populus trichocarpa 5 

Manniot esculenta 7 

Monocot Sorghum bicolor 6 

Zea mays 6 

Oryza sativa 4 

Brachypodium distachyon 4 

Lycophyte Selaginella moellendorffii 3 

Bryophyte Physcomitrella patens 5 

Chlorophyte Chlamydomonas reinhardtii 1 
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its mammalian NHE orthologues [4], was the localization

of the C-terminus in the vacuolar lumen [8,11]. The

Arabidopsis NHX1 C-terminus interacted with a calmo-

dulin like protein15 (AtCaM15) within the vacuolar
ss in different plant species. The Phytozome database (http://

ences; NHX7/SOS1, NHX1, or NHX5 and orthologous sequences in

genes are members of the plasma membrane, vacuolar (class I) or

d to represent evolutionarily diverse plants

NHX Class

Class I) Endosomal (Class II) Plasma Membrane

2 2

1 1

2 1

2 1

3 1

1 2

2 1

2 1

2 1

2 1

2 2

2 2

2 2

3 2
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lumen in a Ca2+-dependent and pH-dependent manner.

Under normal physiological conditions, where the

vacuole is acidic (pH 5.5) and Ca2+ activity high,

AtCaM15 is bound to the AtNHX1 and results in a higher

K+/H+ than Na+/H+ activity. At higher pH (6.0–7.5),

AtCaM15 binding to AtNHX1 was reduced and the

Na+/H+ activity increased relative to the K+/H+ activity.

Because salinity causes the alkalinization of the vacuole

[12,13], the pH dependent change in K+ for Na+ selec-

tivity of NHX1 might constitute a mechanism for Na+

accumulation (at the expense of K+) into the vacuole.

Regulatory effects of phosphorylation are well documen-

ted in NHEs [14] and SOS1/NHX7 [15,16] but no direct

evidence for any intracellular NHX is available. Under

salt stress, the Ca2+ sensor protein SOS3/CBL4, activates

the protein kinase SOS2/CIPK24 which in turn phosphor-

ylates and activates SOS1/NHX7 to reduce cytoplasmic

Na+ [15–19]. Interestingly the activity of vacuolar NHX

activity was reduced in sos2 and restored with constitu-

tively active SOS2 but no phosphorylation of NHX was

found [17]. The possibility that the CBL/CIPK system

might regulate intracellular NHX activity should be

considered.

Cation homeostasis and salt tolerance
Plant NHXs mediate both Na+/H+ and K+/H+ exchange

[20,22,23] and therefore affect both salinity tolerance and

K+ nutrition. The initial cloning and overexpression of

AtNHX1 in Arabidopsis firmly demonstrated the import-

ance of intracellular Na+ compartmentation for salt tol-

erance [24]. Many additional studies subsequently

confirmed that NHX overexpression lead to improved

salt tolerance in diverse species [21,24–29] supporting the

idea that maintaining a low Na+/K+ cytosolic ratio by

removing excess cytosolic Na+ into the vacuole, in

addition to the extrusion of Na+ into the apoplast by

SOS1/NHX7, is critical during salt stress. Enhanced

expression of vacuolar NHXs in a salt tolerant tomato

variety under salt further confirmed a role of vacuolar

NHX in salt tolerance [30]. Salt tolerance of NHX over-

expressing transgenics does not seem to depend on the

source species or NHX isoform used, but probably

affected by the regulation of NHX expression, changes

in K+ homeostasis brought about by high intracellular

Na+, and possible regulation of NHX cation selectivity.

For example endosomal/vesicular NHXs may preferen-

tially transport K+ compared to Na+ [31]. The precise

mechanisms and interactions by which K+ and Na+ are

regulated remain unclear because NHX overexpression

has resulted in contrasting ion accumulation between

transgenics and wild type plants and may reflect a primary

function of vacuolar NHXs in maintaining osmotic adjust-

ment during both normal growth as well as under salinity.

Unexpectedly, the addition of moderate salt (30 mM) to

the knockout nhx1nhx2 lacking the two main Arabidopsis

vacuolar antiporters, resulted in improved growth, rather

than adversely affecting it, as compared to controls [32��].
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Knocking out or silencing endosomal/vesicle NHX iso-

forms resulted in salt-sensitive plants [26,33��]. Knock-

outs lacking vacuolar V-ATPase activity had reduced

capacity to store NO3
� or toxic concentrations of Zn2+

but did not exhibit sensitivity to high salt [34��], while salt

sensitivity was observed instead in knockdowns of the

endosomal/trans-Golgi network localized V-ATPase.

These results point to the importance of the endoso-

mal/vesicle system in ameliorating salt stress as supported

by other studies [13,35–37].

Despite the role of NHXs in salt tolerance, NHX cannot

simply catalyze Na+/H+ exchange in non-salinized plants.

In grape NHX1 expression was significantly upregulated

at véraison and during cell expansion where berry

vacuolar K+ accumulation and a drop in acidity occur

[38]. Genetic studies in Arabidopsis firmly demonstrated

the importance of NHXs in the regulation of pH and K+

homeostasis during normal growth and development

[10,23,26,32��,39�]. The Arabidopsis knockout nhx1 had

lower antiport activity, smaller cells [20] and displayed an

upregulation of high affinity K+ uptake transporters [40].

Knockout of the closely related isoform nhx2, did not

display obvious phenotypes [32��] but the double knock-

out nhx1nhx2 displayed a dramatic reduction in cell

expansion and growth, especially in rapidly elongating

tissues as compared to nhx1. Interestingly these plants

also had reduced seed set that was attributed to unsuc-

cessful pollination due to a lack of anther dehiscence and

filament elongation and in which K+ dependent

hydration/dehydration processes have been implicated

[41]. Vacuolar K+ in nhx1nhx2 plants was one third that

of wild type root cells [32��] as well as leaf cells [39�]. K+/

H+ exchange of tonoplast vesicles was markedly reduced

in the same knockout which also displayed impaired

osmoregulation, turgor and delayed stomatal closure,

resulting in poor maintenance of water status [39�]. Open-

ing of stomata require the accumulation of guard cell

vacuolar K+, a process that relies on NHX1 and NHX2

[42��].

Given the importance of K+ as an enzyme cofactor, in

charge balance and an osmoticum, cytosolic K+ con-

centrations must be tightly maintained [43]. At the

typical electrochemical potentials of the plasma mem-

brane and tonoplast, transport of K+ into the cytosol is

passive but would require energy to accumulate above

�20 mM in the vacuole [44–46]. To maintain constant

cytosolic K+, both uptake of K+ from the apoplast and

exchange with the vacuole are essential [44]. The

sensitivity of nhx1nhx2 plants to added K+, their

reduced vacuolar K+ content [32��] and accumulation

of cytosolic K+ [39�] highlights the importance of

vacuolar NHX in intracellular K+ homeostasis. The

technical limitation to measurement of K+ in vesicles,

due to the lack of targeted K+ specific probes, limit our

understanding of the role of endosomal/vesicular NHX
Current Opinion in Plant Biology 2014, 22:1–6
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in Na+/K+ homeostasis and their possible functions in

trafficking and salt responses.

pH homeostasis
Luminal pH is not uniform throughout the cell, but rather

maintained within specific values depending on the

intracellular compartment and becomes progressively

more acidic with maturity along the secretory pathway

[47]. The specific luminal pH of plant cellular compart-

ments was only recently measured using targeted geneti-

cally encoded pH sensors [48�,49��]. In vivo pH

measurements revealed that a gradual acidification of

pH, ranging from pH 7.1 in the ER to �5.5 in the vacuole,

except that the trans-Golgi network (TGN) was more

acidic than prevacuolar compartments (PVC) [49��].
Vesicles that colocalized with NHX5 were significantly

more alkaline than those colocalizing with the endosomal

V-ATPase, while the application of V-ATPase or NHX

inhibitors, caused either a respective alkalinization or

acidification of vesicles. Such data support the idea that

vesicle pH homeostasis requires H+-pumps to establish

the initial acidity, and alkalinizing mechanisms (NHX), in

order to ‘fine-tune’ the luminal pH, as has been suggested

in animals cells [4].

The localization of NHX5 and NHX6 to the Golgi, TGN

[33��], and PVC (Blumwald et al., unpublished results),

the tomato orthologue NHX2 to vesicles [26], as well as

the phenotypes of nhx5nhx6, suggest that endosomal/

vesicular NHXs like AtNHX5 control vesicle pH and

trafficking. Vacuolar NHXs have been associated with pH

homeostasis. For example, morning glory petal requires

NHX activity for coloration [50]. In Arabidopsis nhx1nhx2
roots, vacuolar pH was significantly more acidic especially

in cortical cells of the elongation and maturation zones

[32��]. Nevertheless, the precise role of vacuolar NHXs in

pH regulation is difficult to discern from their roles in

vacuolar K+ accumulation especially since many of the

knockout phenotypes can be attributed to altered K+

homoeostasis.

Essential for vesicular trafficking
Firm demonstration of pH regulation and protein traffick-

ing by NHX-like antiporters was provided in yeast Nhx1D
where cytosolic and vacuolar pH were altered and protein

trafficking out of the Golgi was blocked [51,52]. In

Arabidopsis, a role of vesicular/endosomal NHXs in endo-

membrane trafficking was initially provided by the

nhx5nhx6 double knockout [33��]. These plants missorted

vacuolar destined cargo to the apoplast and displayed a

notable delay in labeling of the vacuole with the tracer,

FM4-64 [6]. A functional link between the TGN loca-

lized v-ATPase complex and NHX5 and NHX6 was

proposed based on high colocalization between the

TGN localized V-ATPase and NHX5 and NHX6

[33��]. More recent data indicated that the Golgi and

trans-Golgi network in nhx5nhx6 were significantly more
Current Opinion in Plant Biology 2014, 22:1–6 
acidic than wild type (Blumwald, unpublished results).

These data suggest that endosomal/vesicular NHXs have

important roles in vesicle pH homeostasis that is essential

to trafficking.

Conclusion
Recent advances highlight novel NHX cellular and phys-

iological roles that go beyond their importance in salt

tolerance. Genetic studies provided compelling evidence

to support earlier biochemical data and indicate that

NHXs regulate a multitude of cellular and physiological

processes including cell expansion, cation homeostasis,

turgor and osmotic adjustment, pH regulation, vesicle

trafficking, stomatal function and plant water status as

well as flowering. The development of multiple NHX

knockout lines, together with the generation of geneti-

cally-encoded ion sensors will facilitate further under-

standing of how ion and pH homeostasis regulate

mechanisms that control vesicular trafficking and protein

processing.
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